1
|
Ang BWK, Yeow CH, Lim JH. A Critical Review on Factors Affecting the User Adoption of Wearable and Soft Robotics. SENSORS (BASEL, SWITZERLAND) 2023; 23:3263. [PMID: 36991974 PMCID: PMC10051244 DOI: 10.3390/s23063263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the advent of soft robotics has changed the landscape of wearable technologies. Soft robots are highly compliant and malleable, thus ensuring safe human-machine interactions. To date, a wide variety of actuation mechanisms have been studied and adopted into a multitude of soft wearables for use in clinical practice, such as assistive devices and rehabilitation modalities. Much research effort has been put into improving their technical performance and establishing the ideal indications for which rigid exoskeletons would play a limited role. However, despite having achieved many feats over the past decade, soft wearable technologies have not been extensively investigated from the perspective of user adoption. Most scholarly reviews of soft wearables have focused on the perspective of service providers such as developers, manufacturers, or clinicians, but few have scrutinized the factors affecting adoption and user experience. Hence, this would pose a good opportunity to gain insight into the current practice of soft robotics from a user's perspective. This review aims to provide a broad overview of the different types of soft wearables and identify the factors that hinder the adoption of soft robotics. In this paper, a systematic literature search using terms such as "soft", "robot", "wearable", and "exoskeleton" was conducted according to PRISMA guidelines to include peer-reviewed publications between 2012 and 2022. The soft robotics were classified according to their actuation mechanisms into motor-driven tendon cables, pneumatics, hydraulics, shape memory alloys, and polyvinyl chloride muscles, and their pros and cons were discussed. The identified factors affecting user adoption include design, availability of materials, durability, modeling and control, artificial intelligence augmentation, standardized evaluation criteria, public perception related to perceived utility, ease of use, and aesthetics. The critical areas for improvement and future research directions to increase adoption of soft wearables have also been highlighted.
Collapse
Affiliation(s)
- Benjamin Wee Keong Ang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; (B.W.K.A.); (C.-H.Y.)
| | - Chen-Hua Yeow
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; (B.W.K.A.); (C.-H.Y.)
| | - Jeong Hoon Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Division of Rehabilitation Medicine, University Medicine Cluster, National University Hospital, Singapore 119077, Singapore
| |
Collapse
|
2
|
Abdelhafiz MH, Andreasen Struijk LNS, Dosen S, Spaich EG. Biomimetic Tendon-Based Mechanism for Finger Flexion and Extension in a Soft Hand Exoskeleton: Design and Experimental Assessment. SENSORS (BASEL, SWITZERLAND) 2023; 23:2272. [PMID: 36850871 PMCID: PMC9960426 DOI: 10.3390/s23042272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
This study proposes a bioinspired exotendon routing configuration for a tendon-based mechanism to provide finger flexion and extension that utilizes a single motor to reduce the complexity of the system. The configuration was primarily inspired by the extrinsic muscle-tendon units of the human musculoskeletal system. The function of the intrinsic muscle-tendon units was partially compensated by adding a minor modification to the configuration of the extrinsic units. The finger kinematics produced by this solution during flexion and extension were experimentally evaluated on an artificial finger and compared to that obtained using the traditional mechanism, where one exotendon was inserted at the distal phalanx. The experiments were conducted on nine healthy subjects who wore a soft exoskeleton glove equipped with the novel tendon mechanism. Contrary to the traditional approach, the proposed mechanism successfully prevented the hyperextension of the distal interphalangeal (DIP) and the metacarpophalangeal (MCP) joints. During flexion, the DIP joint angles produced by the novel mechanism were smaller than the angles generated by the traditional approach for the same proximal interphalangeal (PIP) joint angles. This provided a flexion trajectory closer to the voluntary flexion motion and avoided straining the interphalangeal coupling between the DIP and PIP joints. Finally, the proposed solution generated similar trajectories when applied to a stiff artificial finger (simulating spasticity). The results, therefore, demonstrate that the proposed approach is indeed an effective solution for the envisioned soft hand exoskeleton system.
Collapse
Affiliation(s)
- Mohamed H. Abdelhafiz
- Neurorehabilitation Systems Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark
| | - Lotte N. S. Andreasen Struijk
- Neurorehabilitation Robotics and Engineering Group, Center for Rehabilitation Robotics, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark
| | - Strahinja Dosen
- Neurorehabilitation Systems Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark
| | - Erika G. Spaich
- Neurorehabilitation Systems Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark
| |
Collapse
|
3
|
Lieber J, Dittli J, Lambercy O, Gassert R, Meyer-Heim A, van Hedel HJA. Clinical utility of a pediatric hand exoskeleton: identifying users, practicability, and acceptance, and recommendations for design improvement. J Neuroeng Rehabil 2022; 19:17. [PMID: 35148786 PMCID: PMC8832660 DOI: 10.1186/s12984-022-00994-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Children and adolescents with upper limb impairments can experience limited bimanual performance reducing daily-life independence. We have developed a fully wearable pediatric hand exoskeleton (PEXO) to train or compensate for impaired hand function. In this study, we investigated its appropriateness, practicability, and acceptability. METHODS Children and adolescents aged 6-18 years with functional limitations in at least one hand due to a neurological cause were selected for this cross-sectional evaluation. We characterized participants by various clinical tests and quantified bimanual performance with the Assisting Hand Assessment (AHA). We identified children whose AHA scaled score increased by ≥ 7 points when using the hand exoskeleton and determined clinical predictors to investigate appropriateness. The time needed to don each component and the number of technical issues were recorded to evaluate practicability. For acceptability, the experiences of the patients and the therapist with PEXO were evaluated. We further noted any adverse events. RESULTS Eleven children (median age 11.4 years) agreed to participate, but data was available for nine participants. The median AHA scaled score was higher with PEXO (68; IQR: 59.5-83) than without (55; IQR: 37.5-80.5; p = 0.035). The Box and Block test, the Selective Control of the Upper Extremity Scale, and finger extensor muscle strength could differentiate well between those participants who improved in AHA scaled scores by ≥ 7 points and those who did not (sensitivity and specificity varied between 0.75 and 1.00). The median times needed to don the back module, the glove, and the hand module were 62, 150, and 160 s, respectively, but all participants needed assistance. The most critical failures were the robustness of the transmission system, the electronics, and the attachment system. Acceptance was generally high, particularly in participants who improved bimanual performance with PEXO. Five participants experienced some pressure points. No adverse events occurred. CONCLUSIONS PEXO is a safe exoskeleton that can improve bimanual hand performance in young patients with minimal hand function. PEXO receives high acceptance. We formulated recommendations to improve technical issues and the donning before such exoskeletons can be used under daily-life conditions for therapy or as an assistive device. Trial registration Not appropriate.
Collapse
Affiliation(s)
- Jan Lieber
- Swiss Children's Rehab - Research Department, University Children's Hospital Zurich, Mühlebergstrasse 104, CH-8910, Affoltern am Albis, Switzerland.,Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Jan Dittli
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008, Zurich, Switzerland
| | - Andreas Meyer-Heim
- Swiss Children's Rehab - Research Department, University Children's Hospital Zurich, Mühlebergstrasse 104, CH-8910, Affoltern am Albis, Switzerland.,Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Hubertus J A van Hedel
- Swiss Children's Rehab - Research Department, University Children's Hospital Zurich, Mühlebergstrasse 104, CH-8910, Affoltern am Albis, Switzerland. .,Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
| |
Collapse
|