1
|
Emon OF, Sun H, Rahim A, Choi JW. An Ionic Liquid-Based Stretchable Sensor for Measuring Normal and Shear Force. Soft Robot 2023; 10:1115-1125. [PMID: 37130312 DOI: 10.1089/soro.2022.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Soft and stretchable force sensors are widely used for health monitoring, robotics, prosthetics, and other applications. Soft force sensors with the capability of measuring both normal and shear force could offer even greater functionality and provide more information, particularly in the field of biomechanics. In this work, a new solid-state force sensor is proposed that can measure both normal and shear forces at the same time. The soft and stretchable sensor was fabricated using an ionic liquid (IL)/polymer network. Two separate IL-based polymer membranes were used to detect normal and shear forces. Sensor architecture and electrical wiring for normal, shear, and combined sensing were developed, and various material compositions for different sensor layers were investigated to find the combination that could achieve the optimum sensor performance. A basic material formulation for carbon nanotube-based electrodes, the IL/polymer network, and polymeric insulation layers was proposed. To configure a combined (normal and shear) sensor, separate sensors for normal and shear deformations were first designed and investigated. Later, a combined sensor was fabricated using a mold via screen printing, photocuring, and thermal curing. The combined sensor was evaluated under different force conditions. The results show that the sensor can reliably measure normal and shear forces. Moreover, the findings demonstrate a way to successfully modulate the sensitivity for normal and shear sensing by varying the material composition or geometric configuration, which provides flexibility for application-specific designs.
Collapse
Affiliation(s)
- Omar Faruk Emon
- Department of Mechanical and Industrial Engineering and University of New Haven, West Haven, Connecticut, USA
| | - Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut, USA
| | - Ahadur Rahim
- Department of Mechanical Engineering, The University of Akron, Akron, Ohio, USA
| | - Jae-Won Choi
- Department of Mechanical Engineering, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
2
|
Neupetsch C, Hensel E, Heinke A, Stapf T, Stecher N, Malberg H, Heyde CE, Drossel WG. Approach for Non-Intrusive Detection of the Fit of Orthopaedic Devices Based on Vibrational Data. SENSORS (BASEL, SWITZERLAND) 2023; 23:6500. [PMID: 37514793 PMCID: PMC10386735 DOI: 10.3390/s23146500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The soft tissues of residual limb amputees are subject to large volume fluctuations over the course of a day. Volume fluctuations in residual limbs can lead to local pressure marks, causing discomfort, pain and rejection of prostheses. Existing methods for measuring interface stress encounter several limitations. A major problem is that the measurement instrumentation is applied in the sensitive interface between the prosthesis and residual limb. This paper presents the principle investigation of a non-intrusive technique to evaluate the fit of orthopaedic prosthesis sockets in transfemoral amputees based on experimentally obtained vibrational data. The proposed approach is based on changes in the dynamical behaviour detectable at the outer surface of prostheses; thus, the described interface is not affected. Based on the experimental investigations shown and the derived results, it can be concluded that structural dynamic measurements are a promising non-intrusive technique to evaluate the fit of orthopaedic prosthesis sockets in transfemoral amputee patients. The obtained resonance frequency changes of 2% are a good indicator of successful applicabilityas these changes can be detected without the need for complex measurement devices.
Collapse
Affiliation(s)
- Constanze Neupetsch
- Fraunhofer Institute for Machine Tools and Forming Technology, 09126 Chemnitz, Germany
- Professorship Adaptronics and Lightweight Design, Faculty of Mechanical Engineering, Chemnitz University of Technology, 09111 Chemnitz, Germany
- Department of Orthopaedic, Trauma and Plastic Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Eric Hensel
- Fraunhofer Institute for Machine Tools and Forming Technology, 09126 Chemnitz, Germany
| | - Andreas Heinke
- Institute of Biomedical Engineering, Dresden University of Technology, 01307 Dresden, Germany
| | - Tom Stapf
- Fraunhofer Institute for Machine Tools and Forming Technology, 09126 Chemnitz, Germany
| | - Nico Stecher
- Institute of Biomedical Engineering, Dresden University of Technology, 01307 Dresden, Germany
| | - Hagen Malberg
- Institute of Biomedical Engineering, Dresden University of Technology, 01307 Dresden, Germany
| | - Christoph-Eckhard Heyde
- Department of Orthopaedic, Trauma and Plastic Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Welf-Guntram Drossel
- Fraunhofer Institute for Machine Tools and Forming Technology, 09126 Chemnitz, Germany
- Professorship Adaptronics and Lightweight Design, Faculty of Mechanical Engineering, Chemnitz University of Technology, 09111 Chemnitz, Germany
| |
Collapse
|
3
|
Abbass Y, Dosen S, Seminara L, Valle M. Full-hand electrotactile feedback using electronic skin and matrix electrodes for high-bandwidth human-machine interfacing. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210017. [PMID: 35762222 DOI: 10.1098/rsta.2021.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/16/2022] [Indexed: 06/15/2023]
Abstract
Tactile feedback is relevant in a broad range of human-machine interaction systems (e.g. teleoperation, virtual reality and prosthetics). The available tactile feedback interfaces comprise few sensing and stimulation units, which limits the amount of information conveyed to the user. The present study describes a novel technology that relies on distributed sensing and stimulation to convey comprehensive tactile feedback to the user of a robotic end effector. The system comprises six flexible sensing arrays (57 sensors) integrated on the fingers and palm of a robotic hand, embedded electronics (64 recording channels), a multichannel stimulator and seven flexible electrodes (64 stimulation pads) placed on the volar side of the subject's hand. The system was tested in seven subjects asked to recognize contact positions and identify contact sliding on the electronic skin, using distributed anode configuration (DAC) and single dedicated anode configuration. The experiments demonstrated that DAC resulted in substantially better performance. Using DAC, the system successfully translated the contact patterns into electrotactile profiles that the subjects could recognize with satisfactory accuracy ([Formula: see text] for static and [Formula: see text] for dynamic patterns). The proposed system is an important step towards the development of a high-density human-machine interfacing between the user and a robotic hand. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.
Collapse
Affiliation(s)
- Yahya Abbass
- Department of Electrical, Electronic, Telecommunications Engineering, and Naval Architecture (DITEN), University of Genoa, 16145 Genova, Italy
| | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lucia Seminara
- Department of Electrical, Electronic, Telecommunications Engineering, and Naval Architecture (DITEN), University of Genoa, 16145 Genova, Italy
| | - Maurizio Valle
- Department of Electrical, Electronic, Telecommunications Engineering, and Naval Architecture (DITEN), University of Genoa, 16145 Genova, Italy
| |
Collapse
|
4
|
Abbass Y, Saleh M, Dosen S, Valle M. Embedded Electrotactile Feedback System for Hand Prostheses Using Matrix Electrode and Electronic Skin. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:912-925. [PMID: 34432633 DOI: 10.1109/tbcas.2021.3107723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the technology moves towards more human-like bionic limbs, it is necessary to develop a feedback system that provides active touch feedback to a user of a prosthetic hand. Most of the contemporary sensory substitution methods comprise simple position and force sensors combined with few discrete stimulation units, and hence they are characterized with a limited amount of information that can be transmitted by the feedback. The present study describes a novel system for tactile feedback integrating advanced multipoint sensing (electronic skin) and stimulation (matrix electrodes). The system comprises a flexible sensing array (16 sensors) integrated on the index finger of a Michelangelo prosthetic hand mockup, embedded interface electronics and multichannel stimulator connected to a flexible matrix electrode (24 pads). The developed system conveys contact information (binary detections) to the user. To demonstrate the feasibility, the system was tested in six able-bodied subjects who were asked to recognize static patterns (contact position) with two different spatial resolutions and dynamic movement patterns (i.e., sliding along and/or across the finger) presented on the electronic skin. The experiments demonstrated that the system successfully translated the mechanical interaction into electrotactile profiles, which the subjects could recognize with good performance. The success rates (mean ± standard deviation) for the static patterns were 91 ± 4% and 58 ± 10% for low and high spatial resolution, respectively, while the success rate for sliding touch was 94 ± 4%. These results demonstrate that the developed system is an important step towards a new generation of tactile feedback interfaces that can provide high-bandwidth connection between the user and his/her bionic limb. Such systems would allow mimicking spatially distributed natural feedback, thereby facilitating the control and embodiment of the artificial device into the user body scheme.
Collapse
|
5
|
Schmitz JA, Sherman JM, Hansen S, Murray SJ, Balkir S, Hoffman MW. A Low-Power, Single-Chip Electronic Skin Interface for Prosthetic Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1186-1200. [PMID: 31634842 DOI: 10.1109/tbcas.2019.2948006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A low-power, single-chip electronic skin interface is presented. The system on chip (SoC) implementation significantly reduces the physical footprint and power requirements compared to commercial interfaces, which enables the creation nimble prosthetic limbs. Its small size and reduced battery requirements are ideal for advanced prosthetics that utilize electronic skin to provide their user tactile feedback. The architecture consists of multiple charge-sensitive analog front ends (AFEs) interfaced to a central, 16-bit microcontroller core which is capable of processing the sensory information in real time. Event-driven operation allows the chip to monitor all input channels while consuming minimal energy. A test chip has been fabricated in a 0.13 μm CMOS technology and its functionality demonstrated by interfacing the chip to a prototype electronic skin based on polyvinylidene fluoride (PVDF) piezoelectric sensors. Tactile signals from the sensors are measured and processed on-chip to calculate the corresponding charge. This is accomplished by programming the microcontroller with a custom software algorithm, granting the system the flexibility to interface to different types of sensors. The single-chip electronic skin system consumes 7.0 μW per channel and 93.5 μW in the example application when stimulated at 1 Hz, making it suitable for use with battery-powered prosthetics.
Collapse
|
6
|
Fleming A, Huang S, Huang H. Proportional Myoelectric Control of a Virtual Inverted Pendulum Using Residual Antagonistic Muscles: Toward Voluntary Postural Control. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1473-1482. [PMID: 31180864 DOI: 10.1109/tnsre.2019.2922102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper aims to investigate whether transtibial amputees are capable of coordinating the descending neural commands to antagonistic residual ankle muscles for performing dynamic tasks that require continuous, precise control. To achieve this goal, we developed a virtual inverted pendulum that was inherently unstable and mimicked human-like dynamics in a standing posture. Balancing this dynamic system requires continuous inputs, proportional to electromyography (EMG) magnitudes recorded from (residual) tibialis anterior (TA) and lateral gastrocnemius muscles (GAS), respectively. The six able-bodied and six transtibial amputees were recruited and asked to balance the inverted pendulum for ten 90-s trials. The results showed that the amputees were capable of controlling this unstable dynamic system with a proportional myoelectric control; however, they underperformed the able-bodied subjects, who maintained the pendulum closer to center ( p = 0.041 ). Compared to the performance in the initial two trials, amputees improved the performance by significantly reducing the number of pendulum falls ( p = 0.0329 ) and sway size ( p = 0.048 ) in the final two trials. However, the amount of improvement varied across amputee subjects. Amputee subjects demonstrated different task adaptation strategies, including reduction of erroneous residual muscle contractions, development of an appropriate state-action (pendulum state-EMG activation) relationship for the task, and/or reduction of muscle control variability with the improved task performance efficiency (i.e., increased inactivity and sway minimization). The results suggest that after the training of transtibial amputees in coordinating antagonistic residual muscles in dynamic systems, it may be feasible to implement the proportional myoelectric control of the powered ankle prostheses in order to assist the postural control mechanisms, such as anticipatory and compensatory postural adjustments.
Collapse
|
7
|
Agcayazi T, Foster M, Kausche H, Gordon M, Bozkurt A. Multi-axis stress sensor characterization and testing platform. HARDWAREX 2019; 5:e00048. [DOI: 10.1016/j.ohx.2018.e00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|