Torres A, Sarlabous L, Fiz JA, Gea J, Martinez-Llorens JM, Morera J, Jane R. Noninvasive measurement of inspiratory muscle performance by means of diaphragm muscle mechanomyographic signals in COPD patients during an incremental load respiratory test.
ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011;
2010:2493-6. [PMID:
21096168 DOI:
10.1109/iembs.2010.5626618]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study of mechanomyographic (MMG) signals of respiratory muscles is a promising noninvasive technique in order to evaluate the respiratory muscular effort and efficiency. In this work, the MMG signal of the diaphragm muscle it is evaluated in order to assess the respiratory muscular function in Chronic Obstructive Pulmonary Disease (COPD) patients. The MMG signals from left and right hemidiaphragm were acquired using two capacitive accelerometers placed on both left and right sides of the costal wall surface. The MMG signals and the inspiratory pressure signal were acquired while the COPD patients carried out an inspiratory load respiratory test. The population of study is composed of a group of 6 patients with severe COPD (FEV1>50% ref and DLCO < 50% ref). We have found high positive correlation coefficients between the maximum inspiratory pressure (IPmax) developed in a respiratory cycle and different amplitude parameters of both left and right MMG signals (RMS, left: 0.68 ± 0.11 - right: 0.69 ± 0.12; Rényi entropy, left: 0.73 ± 0.10 - right: 0.77 ± 0.08; Multistate Lempel-Ziv, left: 0.73 ± 0.17 - right: 0.74 ± 0.08), and negative correlation between the Pmax and the maximum frequency of the MMG signal spectrum (left: -0.39 ± 0.19 - right: -0.65 ± 0.09). Furthermore, we found that the slope of the evolution of the MMG amplitude parameters, as the load increases during the respiratory test, has positive correlation with the %FEV1/FVC pulmonary function test parameter of the six COPD patients analyzed (RMS, left: 0.38 - right: 0.41; Rényi entropy, left: 0.45 - right: 0.63; Multistate Lempel-Ziv, left: 0.39 - right: 0.64). These results suggest that the information provided by MMG signals could be used in order to evaluate the respiratory effort and the muscular efficiency in COPD patients.
Collapse