Haddad-Mashadrizeh A, Mirahmadi M, Taghavizadeh Yazdi ME, Gholampour-Faroji N, Bahrami A, Zomorodipour A, Moghadam Matin M, Qayoomian M, Saebnia N. Introns and Their Therapeutic Applications in Biomedical Researches.
IRANIAN JOURNAL OF BIOTECHNOLOGY 2023;
21:e3316. [PMID:
38269198 PMCID:
PMC10804063 DOI:
10.30498/ijb.2023.334488.3316]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/23/2023] [Indexed: 01/26/2024]
Abstract
Context
Although for a long time, it was thought that intervening sequences (introns) were junk DNA without any function, their critical roles and the underlying molecular mechanisms in genome regulation have only recently come to light. Introns not only carry information for splicing, but they also play many supportive roles in gene regulation at different levels. They are supposed to function as useful tools in various biological processes, particularly in the diagnosis and treatment of diseases. Introns can contribute to numerous biological processes, including gene silencing, gene imprinting, transcription, mRNA metabolism, mRNA nuclear export, mRNA localization, mRNA surveillance, RNA editing, NMD, translation, protein stability, ribosome biogenesis, cell growth, embryonic development, apoptosis, molecular evolution, genome expansion, and proteome diversity through various mechanisms.
Evidence Acquisition
In order to fulfill the objectives of this study, the following databases were searched: Medline, Scopus, Web of Science, EBSCO, Open Access Journals, and Google Scholar. Only articles published in English were included.
Results & Conclusions
The intervening sequences of eukaryotic genes have critical functions in genome regulation, as well as in molecular evolution. Here, we summarize recent advances in our understanding of how introns influence genome regulation, as well as their effects on molecular evolution. Moreover, therapeutic strategies based on intron sequences are discussed. According to the obtained results, a thorough understanding of intron functional mechanisms could lead to new opportunities in disease diagnosis and therapies, as well as in biotechnology applications.
Collapse