Kamali T, Stashuk DW. Electrophysiological Muscle Classification Using Multiple Instance Learning and Unsupervised Time and Spectral Domain Analysis.
IEEE Trans Biomed Eng 2018;
65:2494-2502. [PMID:
29993485 DOI:
10.1109/tbme.2018.2802200]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE
Electrophysiological muscle classification (EMC) is a crucial step in the diagnosis of neuromuscular disorders. Existing quantitative techniques are not sufficiently robust and accurate to be reliably clinically used. Here, EMC is modeled as a multiple instance learning (MIL) problem and a system to infer unsupervised motor unit potential (MUP) labels and create supervised muscle classifications is presented.
METHODS
The system has five main steps: MUP representation using morphological, stability, and near fiber parameters as well as spectral features extracted from wavelet coefficients; MUP feature selection using unsupervised Laplacian scores; MUP clustering using neighborhood distance entropy consistency to find representations of MUP normality and abnormality; muscle representation by embedding its MUP cluster associations in a feature vector; and muscle classification using support vector machines or random forests.
RESULTS
The evaluation data consist of 63, 83, 93, and 84 sets of MUPs recorded in deltoid, vastus medialis, first dorsal interosseous, and tibialis anterior muscles, respectively. The proposed system discovered representations of normal, myopathic, and neurogenic MUPs for each specific muscle type and resulted in an average classification accuracy of 98%, which is higher than in previous works.
CONCLUSION
Modeling EMC as an instance of the MIL solves the traditional problem of characterizing MUPs without full supervision. Furthermore, finding representations of MUP normality and abnormality using morphological, stability, near fiber, and spectral features improve muscle classification.
SIGNIFICANCE
The proposed method is able to characterize MUPs with respect to disease categories, with no a priori information.
Collapse