1
|
Cervadoro A, Giverso C, Pande R, Sarangi S, Preziosi L, Wosik J, Brazdeikis A, Decuzzi P. Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. PLoS One 2013; 8:e57332. [PMID: 23451208 PMCID: PMC3581487 DOI: 10.1371/journal.pone.0057332] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022] Open
Abstract
A plethora of magnetic nanoparticles has been developed and investigated under different alternating magnetic fields (AMF) for the hyperthermic treatment of malignant tissues. Yet, clinical applications of magnetic hyperthermia are sporadic, mostly due to the low energy conversion efficiency of the metallic nanoparticles and the high tissue concentrations required. Here, we study the hyperthermic performance of commercially available formulations of superparamagnetic iron oxide nanoparticles (SPIOs), with core diameter of 5, 7 and 14 nm, in terms of absolute temperature increase ΔT and specific absorption rate (SAR). These nanoparticles are operated under a broad range of AMF conditions, with frequency f varying between 0.2 and 30 MHz; field strength H ranging from 4 to 10 kA m(-1); and concentration cMNP varying from 0.02 to 3.5 mg ml(-1). At high frequency field (∼30 MHz), non specific heating dominates and ΔT correlates with the electrical conductivity of the medium. At low frequency field (<1 MHz), non specific heating is negligible and the relaxation of the SPIO within the AMF is the sole energy source. We show that the ΔT of the medium grows linearly with cMNP , whereas the SARMNP of the magnetic nanoparticles is independent of cMNP and varies linearly with f and H(2) . Using a computational model for heat transport in a biological tissue, the minimum requirements for local hyperthermia (Ttissue >42°C) and thermal ablation (Ttissue >50°C) are derived in terms of cMNP , operating AMF conditions and blood perfusion. The resulting maps can be used to rationally design hyperthermic treatments and identifying the proper route of administration - systemic versus intratumor injection - depending on the magnetic and biodistribution properties of the nanoparticles.
Collapse
Affiliation(s)
- Antonio Cervadoro
- Department of Translational Imaging, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Department of Mechanics, Politecnico di Torino, Turin, Italy
| | - Chiara Giverso
- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy
| | - Rohit Pande
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, United States of America
- Texas Superconductivity Center, Houston, Texas, United States of America
| | - Subhasis Sarangi
- Texas Superconductivity Center, Houston, Texas, United States of America
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy
| | - Jarek Wosik
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, United States of America
- Texas Superconductivity Center, Houston, Texas, United States of America
| | - Audrius Brazdeikis
- Texas Superconductivity Center, Houston, Texas, United States of America
- Department of Physics, University of Houston, Houston, Texas, United States of America
| | - Paolo Decuzzi
- Department of Translational Imaging, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
2
|
Shenoi MM, Shah NB, Griffin RJ, Vercellotti GM, Bischof JC. Nanoparticle preconditioning for enhanced thermal therapies in cancer. Nanomedicine (Lond) 2011; 6:545-63. [PMID: 21542691 DOI: 10.2217/nnm.10.153] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nanoparticles show tremendous promise in the safe and effective delivery of molecular adjuvants to enhance local cancer therapy. One important form of local cancer treatment that suffers from local recurrence and distant metastases is thermal therapy. In this article, we review a new concept involving the use of nanoparticle-delivered adjuvants to 'precondition' or alter the vascular and immunological biology of the tumor to enhance its susceptibility to thermal therapy. To this end, a number of opportunities to combine nanoparticles with vascular and immunologically active agents are reviewed. One specific example of preconditioning involves a gold nanoparticle tagged with a vascular targeting agent (i.e., TNF-α). This nanoparticle embodiment demonstrates preconditioning through a dramatic reduction in tumor blood flow and induction of vascular damage, which recruits a strong and sustained inflammatory infiltrate in the tumor. The ability of this nanoparticle preconditioning to enhance subsequent heat or cold thermal therapy in a variety of tumor models is reviewed. Finally, the potential for future clinical imaging to judge the extent of preconditioning and thus the optimal timing and extent of combinatorial thermal therapy is discussed.
Collapse
|
3
|
Abstract
Nanooncology, the application of nanobiotechnology to the management of cancer, is currently the most important chapter of nanomedicine. Nanobiotechnology has refined and extended the limits of molecular diagnosis of cancer, for example, through the use of gold nanoparticles and quantum dots. Nanobiotechnology has also improved the discovery of cancer biomarkers, one such example being the sensitive detection of multiple protein biomarkers by nanobiosensors. Magnetic nanoparticles can capture circulating tumor cells in the bloodstream followed by rapid photoacoustic detection. Nanoparticles enable targeted drug delivery in cancer that increases efficacy and decreases adverse effects through reducing the dosage of anticancer drugs administered. Nanoparticulate anticancer drugs can cross some of the biological barriers and achieve therapeutic concentrations in tumor and spare the surrounding normal tissues from toxic effects. Nanoparticle constructs facilitate the delivery of various forms of energy for noninvasive thermal destruction of surgically inaccessible malignant tumors. Nanoparticle-based optical imaging of tumors as well as contrast agents to enhance detection of tumors by magnetic resonance imaging can be combined with delivery of therapeutic agents for cancer. Monoclonal antibody nanoparticle complexes are under investigation for diagnosis as well as targeted delivery of cancer therapy. Nanoparticle-based chemotherapeutic agents are already on the market, and several are in clinical trials. Personalization of cancer therapies is based on a better understanding of the disease at the molecular level, which is facilitated by nanobiotechnology. Nanobiotechnology will facilitate the combination of diagnostics with therapeutics, which is an important feature of a personalized medicine approach to cancer.
Collapse
|