1
|
Cho KH, Hong MR, Song WK. Upper-Limb Robot-Assisted Therapy Based on Visual Error Augmentation in Virtual Reality for Motor Recovery and Kinematics after Chronic Hemiparetic Stroke: A Feasibility Study. Healthcare (Basel) 2022; 10:healthcare10071186. [PMID: 35885713 PMCID: PMC9316043 DOI: 10.3390/healthcare10071186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the effect of upper-limb robot-assisted therapy based on visual error augmentation in virtual reality (UL-RAT-VEAVR) for motor recovery and kinematics after chronic hemiparetic stroke. This study applied a single-group pre- and post-intervention study design. A total of 27 stroke survivors (20 males and 7 females; mean age 54.51 years, mean onset duration 12.7 months) volunteered to participate in this study. UL-RAT-VEAVR was performed three times a week for four weeks, amounting to a total of twelve sessions, in which an end-effector-based robotic arm was used with a visual display environment in virtual reality. Each subject performed a total of 480 point-to-point movements toward 3 direction targets (medial, ipsilateral, and contralateral side) in the visual display environment system while holding the handle of the end-effector-based robotic arm. The visual error (distance to the targets on the monitor) in virtual reality was increased by 5% every week based on the subject’s maximum point-to-point reaching trajectory. Upper-limb motor recovery was measured in all subjects using the Fugl−Meyer Assessment (FMA) upper-limb subscale, the Box and Block Test (BBT), and the Action Research Arm Test (ARAT), before and after training. In addition, a kinematic assessment was also performed before and after training and consisted of time, speed, distance, and curvilinear ratio for point-to-point movement. There were significant improvements in both upper-limb motor function and kinematics after 4 weeks of UL-RAT-VEAVR (p < 0.05). Our results showed that the UL-RAT-VEAVR may have the potential to be used as one of the upper-limb rehabilitation strategies in chronic stroke survivors. Future studies should investigate the clinical effects of the error-augmentation paradigm using an RCT design.
Collapse
Affiliation(s)
- Ki-Hun Cho
- Department of Physical Therapy, Korea National University of Transportation, Jeungpyeong 27909, Korea;
| | - Mi-Ran Hong
- Department of Rehabilitative & Assistive Technology, National Rehabilitation Research Institute, National Rehabilitation Center, 58 Samgaksan-ro, Gangbuk-gu, Seoul 01022, Korea;
| | - Won-Kyung Song
- Department of Rehabilitative & Assistive Technology, National Rehabilitation Research Institute, National Rehabilitation Center, 58 Samgaksan-ro, Gangbuk-gu, Seoul 01022, Korea;
- Correspondence: ; Tel.: +82-2-901-1901; Fax: +82-2-901-1910
| |
Collapse
|
2
|
Basalp E, Wolf P, Marchal-Crespo L. Haptic Training: Which Types Facilitate (re)Learning of Which Motor Task and for Whom? Answers by a Review. IEEE TRANSACTIONS ON HAPTICS 2021; 14:722-739. [PMID: 34388095 DOI: 10.1109/toh.2021.3104518] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of robots has attracted researchers to design numerous haptic training methods to support motor learning. However, investigations of new methods yielded inconclusive results regarding their effectiveness to enhance learning due to the diversity of tasks, haptic designs, participants' skill level, and study protocols. In this review, we developed a taxonomy to identify generalizable findings out of publications on haptic training. In the taxonomy, we grouped the results of studies on healthy learners based on participants' skill level and tasks' characteristics. Our inspection of included studies revealed that: i) Performance-enhancing haptic methods were beneficial for novices, ii) Training with haptics was as effective as training with other feedback modalities, and iii) Performance-enhancing and performance-degrading haptic methods were useful for the learning of temporal and spatial aspects, respectively. We also observed that these findings are in line with results from robot-aided neurorehabilitation studies on patients. Our review suggests that haptic training can be effective to foster learning, especially when the information cannot be provided with other feedback modalities. We believe the findings from the taxonomy constitute a general guide, which can assist researchers when designing studies to investigate the effectiveness of haptics on learning different tasks.
Collapse
|
3
|
Haptic-Enabled Hand Rehabilitation in Stroke Patients: A Scoping Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a plethora of technology-assisted interventions for hand therapy, however, less is known about the effectiveness of these interventions. This scoping review aims to explore studies about technology-assisted interventions targeting hand rehabilitation to identify the most effective interventions. It is expected that multifaceted interventions targeting hand rehabilitation are more efficient therapeutic approaches than mono-interventions. The scoping review will aim to map the existing haptic-enabled interventions for upper limb rehabilitation and investigates their effects on motor and functional recovery in patients with stroke. The methodology used in this review is based on the Arksey and O’Malley framework, which includes the following stages: identifying the research question, identifying relevant studies, study selection, charting the data, and collating, summarizing, and reporting the results. Results show that using three or four different technologies was more positive than using two technologies (one technology + haptics). In particular, when standardized as a percentage of outcomes, the combination of three technologies showed better results than the combination of haptics with one technology or with three other technologies. To conclude, this study portrayed haptic-enabled rehabilitation approaches that could help therapists decide which technology-enabled hand therapy approach is best suited to their needs. Those seeking to undertake research and development anticipate further opportunities to develop haptic-enabled hand telerehabilitation platforms.
Collapse
|
4
|
Alhussein L, Hosseini EA, Nguyen KP, Smith MA, Joiner WM. Dissociating effects of error size, training duration, and amount of adaptation on the ability to retain motor memories. J Neurophysiol 2019; 122:2027-2042. [PMID: 31483714 PMCID: PMC6879956 DOI: 10.1152/jn.00387.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 11/22/2022] Open
Abstract
Extensive computational and neurobiological work has focused on how the training schedule, i.e., the duration and rate at which an environmental disturbance is presented, shapes the formation of motor memories. If long-lasting benefits are to be derived from motor training, however, retention of the performance improvements gained during practice is essential. Thus a better understanding of mechanisms that promote retention could lead to the design of more effective training procedures. The few studies that have investigated how retention depends on the training schedule have suggested that the gradual exposure of a perturbation leads to improved retention of motor memory compared with an abrupt exposure. However, several of these previous studies showed small effects, and although some controlled the training duration and others the level of learning, none have controlled both. In the present study we disambiguated both of these effects from exposure rate by systematically varying the duration of training, type of trained dynamics, and exposure rate for these dynamics in human force-field adaptation. After controlling for both training duration and the amount of learning, we found essentially identical retention when comparing gradual and abrupt training for two different types of force-field dynamics. By contrast, we found that retention was markedly higher for long-duration compared with short-duration training for both types of dynamics. These results demonstrate that the duration of training has a far greater effect on the retention of motor memory than the exposure rate during training. We show that a multirate learning model provides a computational mechanism for these findings.NEW & NOTEWORTHY Previous studies have suggested that a gradual, incremental introduction of a novel environment is helpful for improving retention. However, we used experimental and computational approaches to demonstrate that previously reported improvements in retention associated with gradual introductions fail to persist when other factors, including the duration of training and the degree of initial learning, are accounted for.
Collapse
Affiliation(s)
- Laith Alhussein
- Department of Bioengineering, George Mason University, Fairfax, Virginia
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Eghbal A Hosseini
- Department of Bioengineering, George Mason University, Fairfax, Virginia
| | - Katrina P Nguyen
- Department of Bioengineering, George Mason University, Fairfax, Virginia
| | - Maurice A Smith
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Center for Brain Science, Harvard University, Cambridge, Massachusetts
| | - Wilsaan M Joiner
- Department of Bioengineering, George Mason University, Fairfax, Virginia
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
- Department of Neuroscience, George Mason University, Fairfax, Virginia
| |
Collapse
|
5
|
Development of an Assistive Robotic System with Virtual Assistance to Enhance Play for Children with Disabilities: A Preliminary Study. J Med Biol Eng 2018. [DOI: 10.1007/s40846-017-0305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Jafari N, Adams KD, Tavakoli M. Haptics to improve task performance in people with disabilities: A review of previous studies and a guide to future research with children with disabilities. J Rehabil Assist Technol Eng 2016; 3:2055668316668147. [PMID: 31186908 PMCID: PMC6453052 DOI: 10.1177/2055668316668147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022] Open
Abstract
This review examines the studies most pertinent to the potential of haptics on
the functionality of assistive robots in manipulation tasks for use by children
with disabilities. Haptics is the fast-emerging science that studies the sense
of touch concerning the interaction of a human and his/her environment; this
paper particularly studies the human–machine interaction that happens through a
haptic interface to enable touch feedback. Haptics-enabled user interfaces for
assistive robots can potentially benefit children whose haptic exploration is
impaired due to a disability in their infancy and throughout their childhood. A
haptic interface can provide touch feedback and potentially contribute to an
enhancement in perception of objects and overall ability to perform manipulation
tasks. The intention of this paper is to review the research on the applications
of haptics, exclusively focusing on attributes affecting task performance. A
review of studies will give a retrospective insight into previous research with
various disability populations, and inform potential limitations/challenges in
research regarding haptic interfaces for assistive robots for use by children
with disabilities.
Collapse
Affiliation(s)
- Nooshin Jafari
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Kim D Adams
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - Mahdi Tavakoli
- Electrical and Computer Engineering Research Facility, University of Alberta, Canada
| |
Collapse
|
7
|
Chen DD, Chan JSY, Pei L, Yan JH. Transfer Effects of Manipulating Temporal Constraints on Learning a Two-Choice Reaction Time Task with Low Stimulus-Response Compatibility. Percept Mot Skills 2012; 115:415-26. [DOI: 10.2466/22.23.25.pms.115.5.415-426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent research using deliberate amplification of spatial errors to increase motor learning leads to the question of whether amplifying temporal errors may also facilitate learning. We investigated transfer effects caused by manipulating temporal constraints on learning a two-choice reaction time (CRT) task with varying degrees of stimulus-response compatibility. Thirty-four participants were randomly assigned to one of the three groups and completed 120 trials during acquisition. For every fourth trial, one group was instructed to decrease CRT by 50 msec. relative to the previous trial and a second group was instructed to increase CRT by 50 msec. The third group (the control) was told not to change their responses. After a 5-min. break, participants completed a 40-trial no-feedback transfer test. A 40-trial delayed transfer test was administered 24 hours later. During acquisition, the Decreased Reaction Time group responded faster than the two other groups, but this group also made more errors than the other two groups. In the 5-min. delayed test (immediate transfer), the Decreased Reaction Time group had faster reaction times than the other two groups, while for the 24-hr. delayed test (delayed transfer), both the Decreased Reaction Time group and Increased Reaction Time group had significantly faster reaction times than the control. For delayed transfer, both Decreased and Increased Reaction Time groups reacted significantly faster than the control group. Analyses of error scores in the transfer tests indicated revealed no significant group differences. Results were discussed with regard to the notion of practice variability and goal-setting benefits.
Collapse
Affiliation(s)
- David D. Chen
- Department of Kinesiology, California State University Fullerton
| | - John S. Y. Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Jin H. Yan
- Department of Applied Psychology, Shanghai University of Sport, Shanghai, China, Department of Psychology, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Supple KA, Brewer BR. Preliminary investigation into the effects of visual feedback distortion on range of motion. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:6745-8. [PMID: 22255887 DOI: 10.1109/iembs.2011.6091664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, a robotic orthotic device with one degree of freedom was used for assessment of individuals with chronic stroke and resultant hemiparesis. The specific aim was to investigate the effect of visual feedback distortion on range of motion (ROM) at the elbow and wrist joints as measured by the Arm IntelliStretch platform from Rehabtek LLC. It was hypothesized that introducing visual feedback distortion in increments under the just noticeable difference of two degrees would directly correspond to an increase in ROM at both the wrist and elbow joints when compared to ROM measured by the IntelliStretch system without visual feedback distortion. Ten individuals an average of 11 years post stroke (SD: 9.7) participated in this study. At the elbow joint, repeated measures ANOVA showed a significant effect of distortion (F(4, 36) = 2.69, p < 0.047). Similar trends were seen at the wrist joint, though these results were not statistically significant.
Collapse
|
9
|
Gonzalez Castro LN, Monsen CB, Smith MA. The binding of learning to action in motor adaptation. PLoS Comput Biol 2011; 7:e1002052. [PMID: 21731476 PMCID: PMC3121685 DOI: 10.1371/journal.pcbi.1002052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/29/2011] [Indexed: 11/18/2022] Open
Abstract
In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned 'credit' for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use.
Collapse
Affiliation(s)
- Luis Nicolas Gonzalez Castro
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
| | - Craig Bryant Monsen
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States of America
| | - Maurice A. Smith
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States of America
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|