1
|
Javadi E, Jamali S. Hemorheology: the critical role of flow type in blood viscosity measurements. SOFT MATTER 2021; 17:8446-8458. [PMID: 34514478 DOI: 10.1039/d1sm00856k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The crucial role of the hemorheological characteristics of blood in a range of diagnoses, treatments and drug delivery mechanisms is widely accepted. Nonetheless, the literature on blood rheology remains inconclusive and sometimes even contradictory. This is in part due to natural variance of blood samples from one study to another, but also stems from fundamental differences in the consequences of the choice of rheometric flow employed. Here, and using a detailed and accurate computational scheme, we thoroughly study the role of flow type in measurement of blood viscosity. Performing these in silico measurements, we isolate the role of flow type and geometry at different hematocrit levels. We show that flow curves obtained in pressure-driven flows relevant to laminar circulatory flows deviate greatly from ones obtained in drag flow at the same hematocrit level. Our numerical platform also allows for the yield stress to be measured under quiescent conditions and without imposing any flow for different hematocrits. We discuss the scaling of the yield stress with the hematocrit level, and show that the differences in pressure vs. drag flows stem from the Red Blood Cell (RBC) orientation at different flow rates as well as the existence of a cell free layer close to the walls.
Collapse
Affiliation(s)
- Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Geekiyanage NM, Sauret E, Saha SC, Flower RL, Gu YT. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching. Biomech Model Mechanobiol 2020; 19:1827-1843. [PMID: 32100179 DOI: 10.1007/s10237-020-01311-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
The red blood cell (RBC) deformability is a critical aspect, and assessing the cell deformation characteristics is essential for better diagnostics of healthy and deteriorating RBCs. There is a need to explore the connection between the cell deformation characteristics, cell morphology, disease states, storage lesion and cell shape-transformation conditions for better diagnostics and treatments. A numerical approach inspired from the previous research for RBC morphology predictions and for analysis of RBC deformations is proposed for the first time, to investigate the deformation characteristics of different RBC morphologies. The present study investigates the deformability characteristics of stomatocyte, discocyte and echinocyte morphologies during optical tweezers stretching and provides the opportunity to study the combined contribution of cytoskeletal spectrin network and the lipid-bilayer during RBC deformation. The proposed numerical approach predicts agreeable deformation characteristics of the healthy discocyte with the analogous experimental observations and is extended to further investigate the deformation characteristics of stomatocyte and echinocyte morphologies. In particular, the computer simulations are performed to investigate the influence of direct stretching forces on different equilibrium cell morphologies on cell spectrin link extensions and cell elongation index, along with a parametric analysis on membrane shear modulus, spectrin link extensibility, bending modulus and RBC membrane-bead contact diameter. The results agree with the experimentally observed stiffer nature of stomatocyte and echinocyte with respect to a healthy discocyte at experimentally determined membrane characteristics and suggest the preservation of relevant morphological characteristics, changes in spectrin link densities and the primary contribution of cytoskeletal spectrin network on deformation behaviour of stomatocyte, discocyte and echinocyte morphologies during optical tweezers stretching deformation. The numerical approach presented here forms the foundation for investigations into deformation characteristics and recoverability of RBCs undergoing storage lesion.
Collapse
Affiliation(s)
- N M Geekiyanage
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - E Sauret
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| | - S C Saha
- University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - R L Flower
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia
| | - Y T Gu
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
3
|
Geekiyanage NM, Balanant MA, Sauret E, Saha S, Flower R, Lim CT, Gu Y. A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies. PLoS One 2019; 14:e0215447. [PMID: 31002688 PMCID: PMC6474605 DOI: 10.1371/journal.pone.0215447] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/02/2019] [Indexed: 02/02/2023] Open
Abstract
An improved red blood cell (RBC) membrane model is developed based on the bilayer coupling model (BCM) to accurately predict the complete sequence of stomatocyte-discocyte-echinocyte (SDE) transformation of a RBC. The coarse-grained (CG)-RBC membrane model is proposed to predict the minimum energy configuration of the RBC from the competition between lipid-bilayer bending resistance and cytoskeletal shear resistance under given reference constraints. In addition to the conventional membrane surface area, cell volume and bilayer-leaflet-area-difference constraints, a new constraint: total-membrane-curvature is proposed in the model to better predict RBC shapes in agreement with experimental observations. A quantitative evaluation of several cellular measurements including length, thickness and shape factor, is performed for the first time, between CG-RBC model predicted and three-dimensional (3D) confocal microscopy imaging generated RBC shapes at equivalent reference constraints. The validated CG-RBC membrane model is then employed to investigate the effect of reduced cell volume and elastic length scale on SDE transformation, to evaluate the RBC deformability during SDE transformation, and to identify the most probable RBC cytoskeletal reference state. The CG-RBC membrane model can predict the SDE shape behaviour under diverse shape-transforming scenarios, in-vitro RBC storage, microvascular circulation and flow through microfluidic devices.
Collapse
Affiliation(s)
- Nadeeshani Maheshika Geekiyanage
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Marie Anne Balanant
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Research & Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Emilie Sauret
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Suvash Saha
- University of Technology Sydney (UTS), Ultimo, New South Wales, Australia
| | - Robert Flower
- Research & Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Chwee Teck Lim
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore
| | - YuanTong Gu
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Sohrabi S, Liu Y. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods. Phys Rev E 2018; 97:033105. [PMID: 29776028 DOI: 10.1103/physreve.97.033105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 02/01/2023]
Abstract
Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the bubble dynamic and cell mechanical damage during the printing process.
Collapse
Affiliation(s)
- Salman Sohrabi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
5
|
Sohrabi S, Liu Y. A Cellular Model of Shear-Induced Hemolysis. Artif Organs 2017; 41:E80-E91. [PMID: 28044355 DOI: 10.1111/aor.12832] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/12/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022]
Abstract
A novel model is presented to study red blood cell (RBC) hemolysis at cellular level. Under high shear rates, pores form on RBC membranes through which hemoglobin (Hb) leaks out and increases free Hb content of plasma leading to hemolysis. By coupling lattice Boltzmann and spring connected network models through immersed boundary method, we estimate hemolysis of a single RBC under various shear rates. First, we use adaptive meshing to find local strain distribution and critical sites on RBC membranes, and then we apply underlying molecular dynamics simulations to evaluate damage. Our approach comprises three sub-models: defining criteria of pore formation, calculating pore size, and measuring Hb diffusive flux out of pores. Our damage model uses information of different scales to predict cellular level hemolysis. Results are compared with experimental studies and other models in literature. The developed cellular damage model can be used as a predictive tool for hydrodynamic and hematologic design optimization of blood-wetting medical devices.
Collapse
Affiliation(s)
| | - Yaling Liu
- Department of Mechanical Engineering & Mechanics.,Bioengineering Program, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
6
|
Tomaiuolo G, Rossi D, Caserta S, Cesarelli M, Guido S. Comparison of two flow-based imaging methods to measure individual red blood cell area and volume. Cytometry A 2012; 81:1040-7. [PMID: 23081807 DOI: 10.1002/cyto.a.22215] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 09/04/2012] [Accepted: 09/15/2012] [Indexed: 11/10/2022]
Abstract
The red blood cells (RBCs) population is characterized by a high heterogeneity in membrane area, cellular volume, and mechanical properties, mainly due to the variety of mechanical and chemical stresses that a red cell undergoes in its entire life span. Here, we provide the first simultaneous area and volume measurements of RBCs flowing in microcapillaries, by using high-speed video microscopy imaging and quantitative data processing based on image analysis techniques. Both confined and unbounded flow conditions (depending on the relative size of RBCs and microcapillary diameter) are investigated. The results are compared with micropipette experiments from the literature and data from Coulter counter routine clinical blood tests. Good agreement is found for RBC volume, especially in the case of confined flow conditions. Surface area measurements, which are lacking in the routine clinical test, are of special interest being a potential diagnostic parameter of altered cell deformability and aggregability. Overall, our results provide a novel flow methodology suitable for high-throughput measurements of RBC geometrical parameters, allowing one to overcome the limits of classical static methods, such as micropipette aspiration, which are not suitable for handling a large number of cells.
Collapse
Affiliation(s)
- Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy.
| | | | | | | | | |
Collapse
|