1
|
Liu Y, Yu F, Zhang B, Zhou M, Bei Y, Zhang Y, Tang J, Yang Y, Huang Y, Xiang Q, Zhao Y, Liang Q, Liu Y. Improving the protective effects of aFGF for peripheral nerve injury repair using sulfated chitooligosaccharides. Asian J Pharm Sci 2018; 14:511-520. [PMID: 32104478 PMCID: PMC7032102 DOI: 10.1016/j.ajps.2018.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 01/07/2023] Open
Abstract
Injury to the peripheral nerves can result in temporary or life-long neuronal dysfunction and subsequent economic or social disability. Acidic fibroblast growth factor (aFGF) promotes the growth and survival of neurons and is a possible treatment for peripheral nerve injury. Yet, the actual therapeutic utility of aFGF is limited by its short half-life and instability in vivo. In the present study, we prepared sulfated chitooligosaccharides (SCOS), which have heparin-like properties, to improve the bioactivity of aFGF. We investigated the protective effects of SCOS with or without aFGF on RSC96 cells exposed to Na2S2O4 hypoxia/reoxygenation injury. Cell viability was measured by MTT assay and cytotoxicity induced by Na2S2O4 was assessed by lactate dehydrogenase (LDH) release into the culture medium. Pretreatment with aFGF and SCOS dramatically decreased LDH release after injury compared to pretreatment with aFGF or SCOS alone. We subsequently prepared an aFGF/SCOS thermo-sensitive hydrogel with poloxamer and examined its effects in vivo. Paw withdrawal thresholds and thermal withdrawal latencies were measured in rats with sciatic nerve injury. Local injection of the aFGF/SCOS hydrogels (aFGF: 40, 80 µg/kg) increased the efficiency of sciatic nerve repair compared to aFGF (80 µg/kg) hydrogel alone. Especially aFGF/SCOS thermo-sensitive hydrogel decreased paw withdrawal thresholds from 117.75 ± 8.38 (g, 4 d) to 65.74 ± 3.39 (g, 10 d), but aFGF alone group were 140.58 ± 27.54 (g, 4 d) to 89.12 ± 5.60 (g, 10 d) (aFGF dose was 80 µg/kg, P < 0.05, n = 8). The thermal withdrawal latencies decreased from 11.61 ± 2.26 (s, 4 d) to 2.37 ±0.67 (s, 10 d). However, aFGF alone group were from 17.69 ± 1.47 (s, 4 d) to 4.65 ± 1.73 (s, 10 d) (P < 0.05, n = 8). Furthermore, the aFGF/SCOS hydrogels also exhibited good biocompatibility in mice. In summary, SCOS improved the protective effects of aFGF in RSC96 cells injured with Na2S2O4 and increased the efficiency of nerve repair and recovery of function in rats with sciatic nerve injury. These findings pave an avenue for the development of novel prophylactic and therapeutic strategies for peripheral nerve injury.
Collapse
Affiliation(s)
- Yanmei Liu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Beibei Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Meng Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yu Bei
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yifan Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jianzhong Tang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| | - Qian Liang
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| | - Yang Liu
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| |
Collapse
|
2
|
Wang Q, He Y, Zhao Y, Xie H, Lin Q, He Z, Wang X, Li J, Zhang H, Wang C, Gong F, Li X, Xu H, Ye Q, Xiao J. A Thermosensitive Heparin-Poloxamer Hydrogel Bridges aFGF to Treat Spinal Cord Injury. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6725-6745. [PMID: 28181797 DOI: 10.1021/acsami.6b13155] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acidic fibroblast growth factor (aFGF) exerts a protective effect on spinal cord injury (SCI) but is limited by the lack of physicochemical stability and the ability to cross the blood spinal cord barrier (BSCB). As promising biomaterials, hydrogels contain substantial amounts of water and a three-dimensional porous structure and are commonly used to load and deliver growth factors. Heparin can not only enhance growth factor loading onto hydrogels but also can stabilize the structure and control the release behavior. Herein, a novel aFGF-loaded thermosensitive heparin-poloxamer (aFGF-HP) hydrogel was developed and applied to provide protection and regeneration after SCI. To assess the effects of the aFGF-HP hydrogel, BSCB restoration, neuron and axonal rehabilitation, glial scar inhibition, inflammatory response suppression, and motor recovery were studied both in vivo and in vitro. The aFGF-HP hydrogels exhibited sustained release of aFGF and protected the bioactivity of aFGF in vitro. Compared to groups intravenously administered either drug-free HP hydrogel or aFGF alone, the aFGF-HP hydrogel group revealed prominent and attenuated disruption of the BSCB, reduced neuronal apoptosis, reactive astrogliosis, and increased neuron and axonal rehabilitation both in vivo and in vitro. This work provides an effective approach to enhance recovery after SCI and provide a successful strategy for SCI protection.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Yan He
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China.,UQ-WMU Joint Research Group for Regenerative Medicine, Oral Health Centre, University of Queensland , Brisbane 4006, Australia
| | - Yingzheng Zhao
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, China
| | - Qian Lin
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Zili He
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Xiaoyan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Hongyu Zhang
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Fanghua Gong
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Xiaokun Li
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Qingsong Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China.,UQ-WMU Joint Research Group for Regenerative Medicine, Oral Health Centre, University of Queensland , Brisbane 4006, Australia
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| |
Collapse
|