Javed F, Fox H, Armitstead J. ResCSRF: Algorithm to Automatically Extract Cheyne-Stokes Respiration Features From Respiratory Signals.
IEEE Trans Biomed Eng 2017;
65:669-677. [PMID:
28600234 DOI:
10.1109/tbme.2017.2712102]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE
Cheyne-Stokes respiration (CSR) related features are significantly associated with cardiac dysfunction. Scoring of these features is labor intensive and time-consuming. To automate the scoring process, an algorithm (ResCSRF) has been developed to extract these features from nocturnal measurement of respiratory signals.
METHODS
ResCSRF takes four signals (nasal flow, thorax, abdomen, and finger oxygen saturation) as input. It first detects CSR cycles and then calculates the respiratory features (cycle length, lung-to-periphery circulation time, and time to peak flow). It outputs nightly statistics (mean, median, standard deviation, and percentiles) of these features. It was developed and blindly tested on a group of 49 chronic heart failure patients undergoing overnight in-home unattended respiratory polygraphy recordings.
RESULTS
The performance of ResCSRF was evaluated against manual expert scoring (ES) (consensus between two independent sleep scorers). In terms of percentage of CSR per recording, the mean difference [reproducibility coefficient (RPC)] between ResCSRF and ES was 0.5(6.4) and 0.5(8.1) for development and test set, respectively. The nightly statistics of CSR-related features output by ResCSRF showed high correlation with ES on the blind test set with the mean difference of less than 3 s and RPC of less than 7 s.
CONCLUSIONS
These results indicate that ResCSRF is capable of automating the scoring of CSR-related features and could potentially be implemented into a remote monitoring system to regularly monitor patients' cardiac function.
Collapse