1
|
Xu Z, Guo X, Wang J. Enhancing skin lesion segmentation with a fusion of convolutional neural networks and transformer models. Heliyon 2024; 10:e31395. [PMID: 38807881 PMCID: PMC11130697 DOI: 10.1016/j.heliyon.2024.e31395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Accurate segmentation is crucial in diagnosing and analyzing skin lesions. However, automatic segmentation of skin lesions is extremely challenging because of their variable sizes, uneven color distributions, irregular shapes, hair occlusions, and blurred boundaries. Owing to the limited range of convolutional networks receptive fields, shallow convolution cannot extract the global features of images and thus has limited segmentation performance. Because medical image datasets are small in scale, the use of excessively deep networks could cause overfitting and increase computational complexity. Although transformer networks can focus on extracting global information, they cannot extract sufficient local information and accurately segment detailed lesion features. In this study, we designed a dual-branch encoder that combines a convolution neural network (CNN) and a transformer. The CNN branch of the encoder comprises four layers, which learn the local features of images through layer-wise downsampling. The transformer branch also comprises four layers, enabling the learning of global image information through attention mechanisms. The feature fusion module in the network integrates local features and global information, emphasizes important channel features through the channel attention mechanism, and filters irrelevant feature expressions. The information exchange between the decoder and encoder is finally achieved through skip connections to supplement the information lost during the sampling process, thereby enhancing segmentation accuracy. The data used in this paper are from four public datasets, including images of melanoma, basal cell tumor, fibroma, and benign nevus. Because of the limited size of the image data, we enhanced them using methods such as random horizontal flipping, random vertical flipping, random brightness enhancement, random contrast enhancement, and rotation. The segmentation accuracy is evaluated through intersection over union and duration, integrity, commitment, and effort indicators, reaching 87.7 % and 93.21 %, 82.05 % and 89.19 %, 86.81 % and 92.72 %, and 92.79 % and 96.21 %, respectively, on the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets, respectively (code: https://github.com/hyjane/CCT-Net).
Collapse
Affiliation(s)
- Zhijian Xu
- School of Electronic Information Engineering, China West Normal University, No. 1 Shida Road, Nanchong, Sichuan, 637009, China
| | - Xingyue Guo
- School of Computer Science, China West Normal University, No. 1 Shida Road, Nanchong, Sichuan, 637009, China
| | - Juan Wang
- School of Computer Science, China West Normal University, No. 1 Shida Road, Nanchong, Sichuan, 637009, China
| |
Collapse
|
2
|
Din S, Mourad O, Serpedin E. LSCS-Net: A lightweight skin cancer segmentation network with densely connected multi-rate atrous convolution. Comput Biol Med 2024; 173:108303. [PMID: 38547653 DOI: 10.1016/j.compbiomed.2024.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/18/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
The rising occurrence and notable public health consequences of skin cancer, especially of the most challenging form known as melanoma, have created an urgent demand for more advanced approaches to disease management. The integration of modern computer vision methods into clinical procedures offers the potential for enhancing the detection of skin cancer . The UNet model has gained prominence as a valuable tool for this objective, continuously evolving to tackle the difficulties associated with the inherent diversity of dermatological images. These challenges stem from diverse medical origins and are further complicated by variations in lighting, patient characteristics, and hair density. In this work, we present an innovative end-to-end trainable network crafted for the segmentation of skin cancer . This network comprises an encoder-decoder architecture, a novel feature extraction block, and a densely connected multi-rate Atrous convolution block. We evaluated the performance of the proposed lightweight skin cancer segmentation network (LSCS-Net) on three widely used benchmark datasets for skin lesion segmentation: ISIC 2016, ISIC 2017, and ISIC 2018. The generalization capabilities of LSCS-Net are testified by the excellent performance on breast cancer and thyroid nodule segmentation datasets. The empirical findings confirm that LSCS-net attains state-of-the-art results, as demonstrated by a significantly elevated Jaccard index.
Collapse
Affiliation(s)
- Sadia Din
- Electrical and Computer Engineering Program, Texas A&M University, Doha, Qatar.
| | | | - Erchin Serpedin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Li Y, Tian T, Hu J, Yuan C. SUTrans-NET: a hybrid transformer approach to skin lesion segmentation. PeerJ Comput Sci 2024; 10:e1935. [PMID: 38660200 PMCID: PMC11042008 DOI: 10.7717/peerj-cs.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024]
Abstract
Melanoma is a malignant skin tumor that threatens human life and health. Early detection is essential for effective treatment. However, the low contrast between melanoma lesions and normal skin and the irregularity in size and shape make skin lesions difficult to detect with the naked eye in the early stages, making the task of skin lesion segmentation challenging. Traditional encoder-decoder built with U-shaped networks using convolutional neural network (CNN) networks have limitations in establishing long-term dependencies and global contextual connections, while the Transformer architecture is limited in its application to small medical datasets. To address these issues, we propose a new skin lesion segmentation network, SUTrans-NET, which combines CNN and Transformer in a parallel fashion to form a dual encoder, where both CNN and Transformer branches perform dynamic interactive fusion of image information in each layer. At the same time, we introduce our designed multi-grouping module SpatialGroupAttention (SGA) to complement the spatial and texture information of the Transformer branch, and utilize the Focus idea of YOLOV5 to construct the Patch Embedding module in the Transformer to prevent the loss of pixel accuracy. In addition, we design a decoder with full-scale information fusion capability to fully fuse shallow and deep features at different stages of the encoder. The effectiveness of our method is demonstrated on the ISIC 2016, ISIC 2017, ISIC 2018 and PH2 datasets and its advantages over existing methods are verified.
Collapse
Affiliation(s)
- Yaqin Li
- School of Mathematics and Computer Science, Wuhan Polytechnic University School, Wuhan, Hubei, China
| | - Tonghe Tian
- School of Mathematics and Computer Science, Wuhan Polytechnic University School, Wuhan, Hubei, China
| | - Jing Hu
- School of Mathematics and Computer Science, Wuhan Polytechnic University School, Wuhan, Hubei, China
| | - Cao Yuan
- School of Mathematics and Computer Science, Wuhan Polytechnic University School, Wuhan, Hubei, China
| |
Collapse
|
4
|
Zhu W, Tian J, Chen M, Chen L, Chen J. MSS-UNet: A Multi-Spatial-Shift MLP-based UNet for skin lesion segmentation. Comput Biol Med 2024; 168:107719. [PMID: 38007976 DOI: 10.1016/j.compbiomed.2023.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Multilayer perceptron (MLP) networks have become a popular alternative to convolutional neural networks and transformers because of fewer parameters. However, existing MLP-based models improve performance by increasing model depth, which adds computational complexity when processing local features of images. To meet this challenge, we propose MSS-UNet, a lightweight convolutional neural network (CNN) and MLP model for the automated segmentation of skin lesions from dermoscopic images. Specifically, MSS-UNet first uses the convolutional module to extract local information, which is essential for precisely segmenting the skin lesion. We propose an efficient double-spatial-shift MLP module, named DSS-MLP, which enhances the vanilla MLP by enabling communication between different spatial locations through double spatial shifts. We also propose a module named MSSEA with multiple spatial shifts of different strides and lighter external attention to enlarge the local receptive field and capture the boundary continuity of skin lesions. We extensively evaluated the MSS-UNet on ISIC 2017, 2018, and PH2 skin lesion datasets. On three datasets, the method achieves IoU metrics of 85.01%±0.65, 83.65%±1.05, and 92.71%±1.03, with a parameter size and computational complexity of 0.33M and 15.98G, respectively, outperforming most state-of-the-art methods.The code is publicly available at https://github.com/AirZWH/MSS-UNet.
Collapse
Affiliation(s)
- Wenhao Zhu
- Computer School, University of South China, Hengyang, China
| | - Jiya Tian
- School of Information Engineering, Xinjiang Institute of Technology, Aksu, China
| | - Mingzhi Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lingna Chen
- Computer School, University of South China, Hengyang, China.
| | - Junxi Chen
- Affiliated Nanhua Hospital, University of South China, Hengyang, China.
| |
Collapse
|
5
|
Kavitha P, Ayyappan G, Jayagopal P, Mathivanan SK, Mallik S, Al-Rasheed A, Alqahtani MS, Soufiene BO. Detection for melanoma skin cancer through ACCF, BPPF, and CLF techniques with machine learning approach. BMC Bioinformatics 2023; 24:458. [PMID: 38053030 DOI: 10.1186/s12859-023-05584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Intense sun exposure is a major risk factor for the development of melanoma, an abnormal proliferation of skin cells. Yet, this more prevalent type of skin cancer can also develop in less-exposed areas, such as those that are shaded. Melanoma is the sixth most common type of skin cancer. In recent years, computer-based methods for imaging and analyzing biological systems have made considerable strides. This work investigates the use of advanced machine learning methods, specifically ensemble models with Auto Correlogram Methods, Binary Pyramid Pattern Filter, and Color Layout Filter, to enhance the detection accuracy of Melanoma skin cancer. These results suggest that the Color Layout Filter model of the Attribute Selection Classifier provides the best overall performance. Statistics for ROC, PRC, Kappa, F-Measure, and Matthews Correlation Coefficient were as follows: 90.96% accuracy, 0.91 precision, 0.91 recall, 0.95 ROC, 0.87 PRC, 0.87 Kappa, 0.91 F-Measure, and 0.82 Matthews Correlation Coefficient. In addition, its margins of error are the smallest. The research found that the Attribute Selection Classifier performed well when used in conjunction with the Color Layout Filter to improve image quality.
Collapse
Affiliation(s)
- P Kavitha
- Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Chennai, India
| | - G Ayyappan
- Department of Information Technology, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai, India
| | - Prabhu Jayagopal
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sandeep Kumar Mathivanan
- School of Computing Science and Engineering, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, 02115, USA
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Amal Al-Rasheed
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Ben Othman Soufiene
- PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse, Tunisia.
| |
Collapse
|
6
|
Zhang Z, Ye S, Liu Z, Wang H, Ding W. Deep Hyperspherical Clustering for Skin Lesion Medical Image Segmentation. IEEE J Biomed Health Inform 2023; 27:3770-3781. [PMID: 37022227 DOI: 10.1109/jbhi.2023.3240297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diagnosis of skin lesions based on imaging techniques remains a challenging task because data (knowledge) uncertainty may reduce accuracy and lead to imprecise results. This paper investigates a new deep hyperspherical clustering (DHC) method for skin lesion medical image segmentation by combining deep convolutional neural networks and the theory of belief functions (TBF). The proposed DHC aims to eliminate the dependence on labeled data, improve segmentation performance, and characterize the imprecision caused by data (knowledge) uncertainty. First, the SLIC superpixel algorithm is employed to group the image into multiple meaningful superpixels, aiming to maximize the use of context without destroying the boundary information. Second, an autoencoder network is designed to transform the superpixels' information into potential features. Third, a hypersphere loss is developed to train the autoencoder network. The loss is defined to map the input to a pair of hyperspheres so that the network can perceive tiny differences. Finally, the result is redistributed to characterize the imprecision caused by data (knowledge) uncertainty based on the TBF. The proposed DHC method can well characterize the imprecision between skin lesions and non-lesions, which is particularly important for the medical procedures. A series of experiments on four dermoscopic benchmark datasets demonstrate that the proposed DHC yields better segmentation performance, increasing the accuracy of the predictions while can perceive imprecise regions compared to other typical methods.
Collapse
|
7
|
Dandu R, Vinayaka Murthy M, Ravi Kumar Y. Transfer learning for segmentation with hybrid classification to Detect Melanoma Skin Cancer. Heliyon 2023; 9:e15416. [PMID: 37151638 PMCID: PMC10161578 DOI: 10.1016/j.heliyon.2023.e15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Melanoma is an abnormal proliferation of skin cells that arises and develops in most of the cases on surface of skin that is exposed to copious amounts of sunlight. This common type of cancer may develop in areas of the skin that are not exposed to a much abundant sunlight. The research addresses the problem of Segmentation and Classification of Melanoma Skin Cancer. Melanoma is the fifth most common skin cancer lesion. Bio-medical Imaging and Analysis has become more promising, interesting, and beneficial in recent years to address the eventual problems of Melanoma Skin Cancerous Tissues that may develop on Skin Surfaces. The evolved research finds that Attributes Selected for Classification with Color Layout Filter model. The research has produced an optimal result in terms of certain performance metrics accuracy, precision, recall, PRC (what is PRC? Expansion is needed in Abstract), The proposed method has yielded 90.96% of accuracy and 91% percent of precise and 0.91 of recall out of 1.0, 0.95 of ROC AUC, 0.87 of Kappa Statistic, 0.91 of F-Measure. It has been noticed a lowest error with reference to proposed method on certain dataset. Finally, this research recommends that the Attribute Selected Classifier by implementing one of the image enhancement techniques like Color Layout Filter is showing an efficient outcome.
Collapse
|
8
|
Yang G, Luo S, Greer P. A Novel Vision Transformer Model for Skin Cancer Classification. Neural Process Lett 2023. [DOI: 10.1007/s11063-023-11204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
AbstractSkin cancer can be fatal if it is found to be malignant. Modern diagnosis of skin cancer heavily relies on visual inspection through clinical screening, dermoscopy, or histopathological examinations. However, due to similarity among cancer types, it is usually challenging to identify the type of skin cancer, especially at its early stages. Deep learning techniques have been developed over the last few years and have achieved success in helping to improve the accuracy of diagnosis and classification. However, the latest deep learning algorithms still do not provide ideal classification accuracy. To further improve the performance of classification accuracy, this paper presents a novel method of classifying skin cancer in clinical skin images. The method consists of four blocks. First, class rebalancing is applied to the images of seven skin cancer types for better classification performance. Second, an image is preprocessed by being split into patches of the same size and then flattened into a series of tokens. Third, a transformer encoder is used to process the flattened patches. The transformer encoder consists of N identical layers with each layer containing two sublayers. Sublayer one is a multihead self-attention unit, and sublayer two is a fully connected feed-forward network unit. For each of the two sublayers, a normalization operation is applied to its input, and a residual connection of its input and its output is calculated. Finally, a classification block is implemented after the transformer encoder. The block consists of a flattened layer and a dense layer with batch normalization. Transfer learning is implemented to build the whole network, where the ImageNet dataset is used to pretrain the network and the HAM10000 dataset is used to fine-tune the network. Experiments have shown that the method has achieved a classification accuracy of 94.1%, outperforming the current state-of-the-art model IRv2 with soft attention on the same training and testing datasets. On the Edinburgh DERMOFIT dataset also, the method has better performance compared with baseline models.
Collapse
|
9
|
Yang S, Wang L. HMT-Net: Transformer and MLP Hybrid Encoder for Skin Disease Segmentation. SENSORS (BASEL, SWITZERLAND) 2023; 23:3067. [PMID: 36991777 PMCID: PMC10051843 DOI: 10.3390/s23063067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
At present, convolutional neural networks (CNNs) have been widely applied to the task of skin disease image segmentation due to the fact of their powerful information discrimination abilities and have achieved good results. However, it is difficult for CNNs to capture the connection between long-range contexts when extracting deep semantic features of lesion images, and the resulting semantic gap leads to the problem of segmentation blur in skin lesion image segmentation. In order to solve the above problems, we designed a hybrid encoder network based on transformer and fully connected neural network (MLP) architecture, and we call this approach HMT-Net. In the HMT-Net network, we use the attention mechanism of the CTrans module to learn the global relevance of the feature map to improve the network's ability to understand the overall foreground information of the lesion. On the other hand, we use the TokMLP module to effectively enhance the network's ability to learn the boundary features of lesion images. In the TokMLP module, the tokenized MLP axial displacement operation strengthens the connection between pixels to facilitate the extraction of local feature information by our network. In order to verify the superiority of our network in segmentation tasks, we conducted extensive experiments on the proposed HMT-Net network and several newly proposed Transformer and MLP networks on three public datasets (ISIC2018, ISBI2017, and ISBI2016) and obtained the following results. Our method achieves 82.39%, 75.53%, and 83.98% on the Dice index and 89.35%, 84.93%, and 91.33% on the IOU. Compared with the latest skin disease segmentation network, FAC-Net, our method improves the Dice index by 1.99%, 1.68%, and 1.6%, respectively. In addition, the IOU indicators have increased by 0.45%, 2.36%, and 1.13%, respectively. The experimental results show that our designed HMT-Net achieves state-of-the-art performance superior to other segmentation methods.
Collapse
Affiliation(s)
| | - Liejun Wang
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
10
|
Qiu S, Li C, Feng Y, Zuo S, Liang H, Xu A. GFANet: Gated Fusion Attention Network for skin lesion segmentation. Comput Biol Med 2023; 155:106462. [PMID: 36857942 DOI: 10.1016/j.compbiomed.2022.106462] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 02/21/2023]
Abstract
Automatic segmentation of skin lesions is crucial for diagnosing and treating skin diseases. Although current medical image segmentation methods have significantly improved the results of skin lesion segmentation, the following major challenges still affect the segmentation performance: (i) segmentation targets have irregular shapes and diverse sizes and (ii) low contrast or blurred boundaries between lesions and background. To address these issues, this study proposes a Gated Fusion Attention Network (GFANet) which designs two progressive relation decoders to accurately segment skin lesions images. First, we use a Context Features Gated Fusion Decoder (CGFD) to fuse multiple levels of contextual features, and then a prediction result is generated as the initial guide map. Then, it is optimized by a prediction decoder consisting of a shape flow and a final Gated Convolution Fusion (GCF) module, where we iteratively use a set of Channel Reverse Attention (CRA) modules and GCF modules in the shape flow to combine the features of the current layer and the prediction results of the adjacent next layer to gradually extract boundary information. Finally, to speed up network convergence and improve segmentation accuracy, we use GCF to fuse low-level features from the encoder and the final output of the shape flow. To verify the effectiveness and advantages of the proposed GFANet, we conduct extensive experiments on four publicly available skin lesion datasets (International Skin Imaging Collaboration [ISIC] 2016, ISIC 2017, ISIC 2018, and PH2) and compare them with state-of-the-art methods. The experimental results show that the proposed GFANet achieves excellent segmentation performance in commonly used evaluation metrics, and the segmentation results are stable. The source code is available at https://github.com/ShiHanQ/GFANet.
Collapse
Affiliation(s)
- Shihan Qiu
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen, 529020, China
| | - Chengfei Li
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen, 529020, China.
| | - Yue Feng
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen, 529020, China
| | - Song Zuo
- Department of Hemangioma and Vascular Malformation, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
| | - Huijie Liang
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen, 529020, China
| | - Ao Xu
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen, 529020, China
| |
Collapse
|
11
|
DBCGN: dual branch cascade graph network for skin lesion segmentation. INT J MACH LEARN CYB 2023. [DOI: 10.1007/s13042-023-01802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
12
|
Ramadan R, Aly S, Abdel-Atty M. Color-invariant skin lesion semantic segmentation based on modified U-Net deep convolutional neural network. Health Inf Sci Syst 2022; 10:17. [PMID: 35978865 PMCID: PMC9376187 DOI: 10.1007/s13755-022-00185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/26/2022] Open
Abstract
Melanoma is a type of skin lesion that is less common than other types of skin lesions, but it is fast growing and spreading. Therefore, it is classified as a serious disease that directly threatens human health and life. Recently, the number of deaths due to this disease has increased significantly. Thus, researchers are interested in creating computer-aided diagnostic systems that aid in the proper diagnosis and detection of these lesions from dermoscopy images. Relying on manual diagnosis is time consuming in addition to requiring enough experience from dermatologists. Current skin lesion segmentation systems use deep convolutional neural networks to detect skin lesions from RGB dermoscopy images. However, relying on RGB color model is not always the optimal choice to train such networks because some fine details of lesion parts in the dermoscopy images can not clearly appear using RGB color model. Other color models exhibit invariant features of the dermoscopy images so that they can improve the performance of deep neural networks. In the proposed Color Invariant U-Net (CIU-Net) model, a color mixture block is added at the beginning of the contracting path of U-Net. The color mixture block acts as a mixer to learn the fusion of various input color models and create a new one with three channels. Furthermore, a new channel-attention module is included in the connection path between encoder and decoder paths. This channel attention module is developed to enrich the extracted color features. From the experimental result, we found that the proposed CIU-Net works in harmony with the new proposed hybrid loss function to enhance skin segmentation results. The performance of the proposed CIU-Net architecture is evaluated using ISIC 2018 dataset and the results are compared with other recent approaches. Our proposed method outperformed other recent approaches and achieved the best Dice and Jaccard coefficient with values 92.56% and 91.40%, respectively.
Collapse
Affiliation(s)
- Rania Ramadan
- Mathematics Department, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Saleh Aly
- Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan, 81542 Egypt
- Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Al-Majmaah, 11952 Saudi Arabia
| | - Mahmoud Abdel-Atty
- Mathematics Department, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| |
Collapse
|
13
|
Dong Y, Wang L, Li Y. TC-Net: Dual coding network of Transformer and CNN for skin lesion segmentation. PLoS One 2022; 17:e0277578. [PMID: 36409714 PMCID: PMC9678318 DOI: 10.1371/journal.pone.0277578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/29/2022] [Indexed: 11/22/2022] Open
Abstract
Skin lesion segmentation has become an essential recent direction in machine learning for medical applications. In a deep learning segmentation network, the convolutional neural network (CNN) uses convolution to capture local information for modeling. However, it ignores the relationship between pixels and still can not meet the precise segmentation requirements of some complex low contrast datasets. Transformer performs well in modeling global feature information, but their ability to extract fine-grained local feature patterns is weak. In this work, The dual coding fusion network architecture Transformer and CNN (TC-Net), as an architecture that can more accurately combine local feature information and global feature information, can improve the segmentation performance of skin images. The results of this work demonstrate that the combination of CNN and Transformer brings very significant improvement in global segmentation performance and allows outperformance as compared to the pure single network model. The experimental results and visual analysis of these three datasets quantitatively and qualitatively illustrate the robustness of TC-Net. Compared with Swin UNet, on the ISIC2018 dataset, it has increased by 2.46% in the dice index and about 4% in the JA index. On the ISBI2017 dataset, the dice and JA indices rose by about 4%.
Collapse
Affiliation(s)
- Yuying Dong
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Liejun Wang
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
- * E-mail:
| | - Yongming Li
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
14
|
Feng K, Ren L, Wang G, Wang H, Li Y. SLT-Net: A codec network for skin lesion segmentation. Comput Biol Med 2022; 148:105942. [PMID: 35964466 DOI: 10.1016/j.compbiomed.2022.105942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/03/2022]
Abstract
Automatic segmentation of skin lesions is beneficial for improving the accuracy and efficiency of melanoma diagnosis. However, due to variation in the size and shape of the lesion areas and the low contrast between the edges of the lesion and the normal skin tissue, this task is very challenging. The traditional convolutional neural network based on codec structure lacks the capability of multi-scale context information modeling and cannot realize information interaction of skip connections at the various levels, which limits the segmentation performance. Therefore, a new codec structure of skin lesion Transformer network (SLT-Net) was proposed and applied to skin lesion segmentation in this study. Specifically, SLT-Net used CSwinUnet as the codec to model the long-distance dependence between features and used the multi-scale context Transformer (MCT) as the skip connection to realize information interaction between skip connections across levels in the channel dimension. We have performed extensive experiments to verify the effectiveness and superiority of our proposed method on three public skin lesion datasets, including the ISIC-2016, ISIC-2017, and ISIC-2018. The DSC values on the three data sets reached 90.45%, 79.87% and 82.85% respectively, higher than most of the state-of-the-art methods. The excellent performance of SLT-Net on these three datasets proved that it could improve the accuracy of skin lesion segmentation, providing a new benchmark reference for skin lesion segmentation tasks. The code is available at https://github.com/FengKaili-fkl/SLT-Net.git.
Collapse
Affiliation(s)
- Kaili Feng
- The School of Electronic Information Engineering, Hebei University, Hebei, 071002, China
| | - Lili Ren
- Affiliated Hospital of Hebei University, Hebei, 071030, China
| | - Guanglei Wang
- The School of Electronic Information Engineering, Hebei University, Hebei, 071002, China
| | - Hongrui Wang
- The School of Electronic Information Engineering, Hebei University, Hebei, 071002, China
| | - Yan Li
- The School of Electronic Information Engineering, Hebei University, Hebei, 071002, China.
| |
Collapse
|
15
|
Rasheed A, Umar AI, Shirazi SH, Khan Z, Nawaz S, Shahzad M. Automatic eczema classification in clinical images based on hybrid deep neural network. Comput Biol Med 2022; 147:105807. [PMID: 35809409 DOI: 10.1016/j.compbiomed.2022.105807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
The healthcare sector is the highest priority sector, and people demand the highest services and care. The fast rise of deep learning, particularly in clinical decision support tools, has provided exciting solutions primarily in medical imaging. In the past, ANNs (artificial neural networks) have been used extensively in dermatology and have shown promising results for detecting various skin diseases. Eczema represents a group of skin conditions characterized by irritated, dry, inflamed, and itchy skin. This study extends great help to automate the diagnosis process of various kinds of eczema through a Hybrid model that uses concatenated ReliefF optimized handcrafted and deep activated features and a support vector machine for classification. Deep learning models and standard image processing techniques have been used to classify eczema from images automatically. This work contributes to the first multiclass image dataset, namely EIR (Eczema image resource). The EIR dataset consists of 2039 labeled eczema images belonging to seven categories. We performed a comparative analysis of multiple ensemble models, attention mechanisms, and data augmentation techniques for this task. The respective accuracy, sensitivity, and specificity, for eczema classification by classifiers were recorded. In comparison, the proposed Hybrid 6 network achieved the highest accuracy of 88.29%, sensitivity of 85.19%, and specificity of 90.33%% among all employed models. Our findings suggest that deep learning models can classify eczema with high accuracy, and their performance is comparable to dermatologists. However, many factors have been elucidated that contribute to reducing accuracy and potential scope for improvement.
Collapse
Affiliation(s)
- Assad Rasheed
- Department of Information Technology, Hazara University Mansehra, Pakistan.
| | - Arif Iqbal Umar
- Department of Information Technology, Hazara University Mansehra, Pakistan
| | - Syed Hamad Shirazi
- Department of Information Technology, Hazara University Mansehra, Pakistan.
| | - Zakir Khan
- Department of Information Technology, Hazara University Mansehra, Pakistan
| | - Shah Nawaz
- Department of Information Technology, Hazara University Mansehra, Pakistan
| | - Muhammad Shahzad
- Department of Information Technology, Hazara University Mansehra, Pakistan
| |
Collapse
|
16
|
A Decision Support System for Melanoma Diagnosis from Dermoscopic Images. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Innovative technologies in dermatology allow for the early screening of skin cancer, which results in a reduction in the mortality rate and surgical treatments. The diagnosis of melanoma is complex not only because of the number of different lesions but because of the high similarity amongst skin lesions of different nature; hence, human vision and physician experience still play a major role. The adoption of automatic systems would aid clinical assessment and make the diagnosis reproducible by eliminating inter- and intra-observer variabilities. In our paper, we describe a computer-aided system for the early diagnosis of melanoma in dermoscopic images. A soft pre-processing phase is performed so as to avoid the loss of details both in texture, colors, and contours, and color-based image segmentation is later carried out using k-means. Features linked to both geometric properties and color characteristics are used to analyze skin lesions through a support vector machine classifier. The PH2 public database is used for the assessment of the procedure’s sensitivity, specificity, and accuracy. A statistical approach is carried out to establish the impact of image quality on performance. The obtained results show remarkable achievements, so our computer-aided approach should be suitable as a Decision Support System for melanoma detection.
Collapse
|
17
|
Patil R, Bellary S. Machine learning approach in melanoma cancer stage detection. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2022. [DOI: 10.1016/j.jksuci.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
A Dermoscopic Inspired System for Localization and Malignancy Classification of Melanocytic Lesions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aims at developing a clinically oriented automated diagnostic tool for distinguishing malignant melanocytic lesions from benign melanocytic nevi in diverse image databases. Due to the presence of artifacts, smooth lesion boundaries, and subtlety in diagnostic features, the accuracy of such systems gets hampered. Thus, the proposed framework improves the accuracy of melanoma detection by combining the clinical aspects of dermoscopy. Two methods have been adopted for achieving the aforementioned objective. Firstly, artifact removal and lesion localization are performed. In the second step, various clinically significant features such as shape, color, texture, and pigment network are detected. Features are further reduced by checking their individual significance (i.e., hypothesis testing). These reduced feature vectors are then classified using SVM classifier. Features specific to the domain have been used for this design as opposed to features of the abstract images. The domain knowledge of an expert gets enhanced by this methodology. The proposed approach is implemented on a multi-source dataset (PH2 + ISBI 2016 and 2017) of 515 annotated images, thereby resulting in sensitivity, specificity and accuracy of 83.8%, 88.3%, and 86%, respectively. The experimental results are promising, and can be applied to detect asymmetry, pigment network, colors, and texture of the lesions.
Collapse
|
19
|
Santos ESD, de M S Veras R, R T Aires K, M B F Portela H, Braz Junior G, Santos JD, Tavares JMR. Semi-automatic segmentation of skin lesions based on superpixels and hybrid texture information. Med Image Anal 2022; 77:102363. [DOI: 10.1016/j.media.2022.102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
20
|
An Effective Skin Disease Segmentation Model based on Deep Convolutional Neural Network. INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES 2022. [DOI: 10.4018/ijiit.298695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Automated segmentation of skin lesions as of digitally recorded images is a crucial procedure to diagnose skin diseases accurately. This paper proposes a segmentation model for skin lesions centered on Deep Convolutional Neural Network (DCNN) for melanoma, squamous, basal, keratosis, dermatofibroma, and vascular types of skin diseases. The DCNN is trained from scratch instead of pre-trained networks with different layers among variations in pooling and activation functions. The comparison of the proposed model is made with the winner of the ISIC 2018 challenge task1(skin lesion segmentation) and other methods. The experiments are performed on challenge datasets and shown better segmentation results. The main contribution is developing an automated segmentation model, evaluating performance, and comparing it with other state-of-art methods. The essence of the proposed work is the simple network architecture and its excellent results. It outperforms by obtaining a Jaccard index of 87%, dice similarity coefficient of 91%, the accuracy of 94%, recall of 94% and precision of 89%.
Collapse
|
21
|
Dai D, Dong C, Xu S, Yan Q, Li Z, Zhang C, Luo N. Ms RED: A novel multi-scale residual encoding and decoding network for skin lesion segmentation. Med Image Anal 2021; 75:102293. [PMID: 34800787 DOI: 10.1016/j.media.2021.102293] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/01/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022]
Abstract
Computer-Aided Diagnosis (CAD) for dermatological diseases offers one of the most notable showcases where deep learning technologies display their impressive performance in acquiring and surpassing human experts. In such the CAD process, a critical step is concerned with segmenting skin lesions from dermoscopic images. Despite remarkable successes attained by recent deep learning efforts, much improvement is still anticipated to tackle challenging cases, e.g., segmenting lesions that are irregularly shaped, bearing low contrast, or possessing blurry boundaries. To address such inadequacies, this study proposes a novel Multi-scale Residual Encoding and Decoding network (Ms RED) for skin lesion segmentation, which is able to accurately and reliably segment a variety of lesions with efficiency. Specifically, a multi-scale residual encoding fusion module (MsR-EFM) is employed in an encoder, and a multi-scale residual decoding fusion module (MsR-DFM) is applied in a decoder to fuse multi-scale features adaptively. In addition, to enhance the representation learning capability of the newly proposed pipeline, we propose a novel multi-resolution, multi-channel feature fusion module (M2F2), which replaces conventional convolutional layers in encoder and decoder networks. Furthermore, we introduce a novel pooling module (Soft-pool) to medical image segmentation for the first time, retaining more helpful information when down-sampling and getting better segmentation performance. To validate the effectiveness and advantages of the proposed network, we compare it with several state-of-the-art methods on ISIC 2016, 2017, 2018, and PH2. Experimental results consistently demonstrate that the proposed Ms RED attains significantly superior segmentation performance across five popularly used evaluation criteria. Last but not least, the new model utilizes much fewer model parameters than its peer approaches, leading to a greatly reduced number of labeled samples required for model training, which in turn produces a substantially faster converging training process than its peers. The source code is available at https://github.com/duweidai/Ms-RED.
Collapse
Affiliation(s)
- Duwei Dai
- Institute of Medical Artificial Intelligence, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Caixia Dong
- Institute of Medical Artificial Intelligence, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Songhua Xu
- Institute of Medical Artificial Intelligence, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Qingsen Yan
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, 5005, Australia
| | - Zongfang Li
- Institute of Medical Artificial Intelligence, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Chunyan Zhang
- Institute of Medical Artificial Intelligence, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nana Luo
- Affiliated Hospital of Jining Medical University, Jining, 272000, China
| |
Collapse
|
22
|
Abstract
Recently, the incidence of skin cancer has increased considerably and is seriously threatening human health. Automatic detection of this disease, where early detection is critical to human life, is quite challenging. Factors such as undesirable residues (hair, ruler markers), indistinct boundaries, variable contrast, shape differences, and color differences in the skin lesion images make automatic analysis quite difficult. To overcome these challenges, a highly effective segmentation method based on a fully convolutional network (FCN) is presented in this paper. The proposed improved FCN (iFCN) architecture is used for the segmentation of full-resolution skin lesion images without any pre- or post-processing. It is to support the residual structure of the FCN architecture with spatial information. This situation, which creates a more advanced residual system, enables more precise detection of details on the edges of the lesion, and an analysis independent of skin color can be performed. It offers two contributions: determining the center of the lesion and clarifying the edge details despite the undesirable effects. Two publicly available datasets, the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 Challenge and PH2 datasets, are used to evaluate the performance of the iFCN method. The mean Jaccard index is 78.34%, the mean Dice score is 88.64%, and the mean accuracy value is 95.30% for the proposed method for the ISBI 2017 test dataset. Furthermore, the mean Jaccard index is 87.1%, the mean Dice score is 93.02%, and the mean accuracy value is 96.92% for the proposed method for the PH2 test dataset.
Collapse
Affiliation(s)
- Şaban Öztürk
- Technology Faculty, Electrical and Electronics Engineering, Amasya University, Amasya, Turkey.
| | - Umut Özkaya
- Engineering and Natural Science Faculty, Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey
| |
Collapse
|
23
|
Kassem MA, Hosny KM, Damaševičius R, Eltoukhy MM. Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review. Diagnostics (Basel) 2021; 11:1390. [PMID: 34441324 PMCID: PMC8391467 DOI: 10.3390/diagnostics11081390] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022] Open
Abstract
Computer-aided systems for skin lesion diagnosis is a growing area of research. Recently, researchers have shown an increasing interest in developing computer-aided diagnosis systems. This paper aims to review, synthesize and evaluate the quality of evidence for the diagnostic accuracy of computer-aided systems. This study discusses the papers published in the last five years in ScienceDirect, IEEE, and SpringerLink databases. It includes 53 articles using traditional machine learning methods and 49 articles using deep learning methods. The studies are compared based on their contributions, the methods used and the achieved results. The work identified the main challenges of evaluating skin lesion segmentation and classification methods such as small datasets, ad hoc image selection and racial bias.
Collapse
Affiliation(s)
- Mohamed A. Kassem
- Department of Robotics and Intelligent Machines, Faculty of Artificial Intelligence, Kaferelshiekh University, Kaferelshiekh 33511, Egypt;
| | - Khalid M. Hosny
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
| | - Mohamed Meselhy Eltoukhy
- Computer Science Department, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
24
|
Dong Y, Wang L, Cheng S, Li Y. FAC-Net: Feedback Attention Network Based on Context Encoder Network for Skin Lesion Segmentation. SENSORS 2021; 21:s21155172. [PMID: 34372409 PMCID: PMC8347551 DOI: 10.3390/s21155172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022]
Abstract
Considerable research and surveys indicate that skin lesions are an early symptom of skin cancer. Segmentation of skin lesions is still a hot research topic. Dermatological datasets in skin lesion segmentation tasks generated a large number of parameters when data augmented, limiting the application of smart assisted medicine in real life. Hence, this paper proposes an effective feedback attention network (FAC-Net). The network is equipped with the feedback fusion block (FFB) and the attention mechanism block (AMB), through the combination of these two modules, we can obtain richer and more specific feature mapping without data enhancement. Numerous experimental tests were given by us on public datasets (ISIC2018, ISBI2017, ISBI2016), and a good deal of metrics like the Jaccard index (JA) and Dice coefficient (DC) were used to evaluate the results of segmentation. On the ISIC2018 dataset, we obtained results for DC equal to 91.19% and JA equal to 83.99%, compared with the based network. The results of these two main metrics were improved by more than 1%. In addition, the metrics were also improved in the other two datasets. It can be demonstrated through experiments that without any enhancements of the datasets, our lightweight model can achieve better segmentation performance than most deep learning architectures.
Collapse
|
25
|
Cheong KH, Tang KJW, Zhao X, Koh JEW, Faust O, Gururajan R, Ciaccio EJ, Rajinikanth V, Acharya UR. An automated skin melanoma detection system with melanoma-index based on entropy features. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9998379. [PMID: 34055044 PMCID: PMC8143893 DOI: 10.1155/2021/9998379] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
In recent years, computerized biomedical imaging and analysis have become extremely promising, more interesting, and highly beneficial. They provide remarkable information in the diagnoses of skin lesions. There have been developments in modern diagnostic systems that can help detect melanoma in its early stages to save the lives of many people. There is also a significant growth in the design of computer-aided diagnosis (CAD) systems using advanced artificial intelligence. The purpose of the present research is to develop a system to diagnose skin cancer, one that will lead to a high level of detection of the skin cancer. The proposed system was developed using deep learning and traditional artificial intelligence machine learning algorithms. The dermoscopy images were collected from the PH2 and ISIC 2018 in order to examine the diagnose system. The developed system is divided into feature-based and deep leaning. The feature-based system was developed based on feature-extracting methods. In order to segment the lesion from dermoscopy images, the active contour method was proposed. These skin lesions were processed using hybrid feature extractions, namely, the Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM) methods to extract the texture features. The obtained features were then processed using the artificial neural network (ANNs) algorithm. In the second system, the convolutional neural network (CNNs) algorithm was applied for the efficient classification of skin diseases; the CNNs were pretrained using large AlexNet and ResNet50 transfer learning models. The experimental results show that the proposed method outperformed the state-of-art methods for HP2 and ISIC 2018 datasets. Standard evaluation metrics like accuracy, specificity, sensitivity, precision, recall, and F-score were employed to evaluate the results of the two proposed systems. The ANN model achieved the highest accuracy for PH2 (97.50%) and ISIC 2018 (98.35%) compared with the CNN model. The evaluation and comparison, proposed systems for classification and detection of melanoma are presented.
Collapse
|
27
|
Skin Lesion Segmentation by U-Net with Adaptive Skip Connection and Structural Awareness. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skin lesion segmentation is one of the pivotal stages in the diagnosis of melanoma. Many methods have been proposed but, to date, this is still a challenging task. Variations in size and color, the fuzzy boundary and the low contrast between lesion and normal skin are the adverse factors for deficient or excessive delineation of lesions, or even inaccurate lesion location detection. In this paper, to counter these problems, we introduce a deep learning method based on U-Net architecture, which performs three tasks, namely lesion segmentation, boundary distance map regression and contour detection. The two auxiliary tasks provide an awareness of boundary and shape to the main encoder, which improves the object localization and pixel-wise classification in the transition region from lesion tissues to healthy tissues. Moreover, concerning the large variation in size, the Selective Kernel modules, which are placed in the skip connections, transfer the multi-receptive field features from the encoder to the decoder. Our methods are evaluated on three publicly available datasets: ISBI2016, ISBI 2017 and PH2. The extensive experimental results show the effectiveness of the proposed method in the task of skin lesion segmentation.
Collapse
|
28
|
Ding X, Wang S. Efficient Unet with depth-aware gated fusion for automatic skin lesion segmentation. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-202566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Melanoma is a very serious disease. The segmentation of skin lesions is a critical step for diagnosing melanoma. However, skin lesions possess the characteristics of large size variations, irregular shapes, blurring borders, and complex background information, thus making the segmentation of skin lesions remain a challenging problem. Though deep learning models usually achieve good segmentation performance for skin lesion segmentation, they have a large number of parameters and FLOPs, which limits their application scenarios. These models also do not make good use of low-level feature maps, which are essential for predicting detailed information. The Proposed EUnet-DGF uses MBconv to implement its lightweight encoder and maintains a strong encoding ability. Moreover, the depth-aware gated fusion block designed by us can fuse feature maps of different depths and help predict pixels on small patterns. The experiments conducted on the ISIC 2017 dataset and PH2 dataset show the superiority of our model. In particular, EUnet-DGF only accounts for 19% and 6.8% of the original Unet in terms of the number of parameters and FLOPs. It possesses a great application potential in practical computer-aided diagnosis systems.
Collapse
Affiliation(s)
- Xiangwen Ding
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Shengsheng Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
29
|
Tong X, Wei J, Sun B, Su S, Zuo Z, Wu P. ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation. Diagnostics (Basel) 2021; 11:501. [PMID: 33809048 PMCID: PMC7999819 DOI: 10.3390/diagnostics11030501] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/29/2023] Open
Abstract
Segmentation of skin lesions is a challenging task because of the wide range of skin lesion shapes, sizes, colors, and texture types. In the past few years, deep learning networks such as U-Net have been successfully applied to medical image segmentation and exhibited faster and more accurate performance. In this paper, we propose an extended version of U-Net for the segmentation of skin lesions using the concept of the triple attention mechanism. We first selected regions using attention coefficients computed by the attention gate and contextual information. Second, a dual attention decoding module consisting of spatial attention and channel attention was used to capture the spatial correlation between features and improve segmentation performance. The combination of the three attentional mechanisms helped the network to focus on a more relevant field of view of the target. The proposed model was evaluated using three datasets, ISIC-2016, ISIC-2017, and PH2. The experimental results demonstrated the effectiveness of our method with strong robustness to the presence of irregular borders, lesion and skin smooth transitions, noise, and artifacts.
Collapse
Affiliation(s)
| | - Junyu Wei
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (X.T.); (B.S.); (S.S.); (Z.Z.); (P.W.)
| | | | | | | | | |
Collapse
|
30
|
Deep learning applications for IoT in health care: A systematic review. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
31
|
Rodrigues DDA, Ivo RF, Satapathy SC, Wang S, Hemanth J, Filho PPR. A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2020.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Cai S, Tian Y, Lui H, Zeng H, Wu Y, Chen G. Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network. Quant Imaging Med Surg 2020; 10:1275-1285. [PMID: 32550136 DOI: 10.21037/qims-19-1090] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Multiphoton microscopy (MPM) offers a feasible approach for the biopsy in clinical medicine, but it has not been used in clinical applications due to the lack of efficient image processing methods, especially the automatic segmentation technology. Segmentation technology is still one of the most challenging assignments of the MPM imaging technique. Methods The MPM imaging segmentation model based on deep learning is one of the most effective methods to address this problem. In this paper, the practicability of using a convolutional neural network (CNN) model to segment the MPM image of skin cells in vivo was explored. A set of MPM in vivo skin cells images with a resolution of 128×128 was successfully segmented under the Python environment with TensorFlow. A novel deep-learning segmentation model named Dense-UNet was proposed. The Dense-UNet, which is based on U-net structure, employed the dense concatenation to deepen the depth of the network architecture and achieve feature reuse. This model included four expansion modules (each module consisted of four down-sampling layers) to extract features. Results Sixty training images were taken from the dorsal forearm using a femtosecond Ti:Sa laser running at 735 nm. The resolution of the images is 128×128 pixels. Experimental results confirmed that the accuracy of Dense-UNet (92.54%) was higher than that of U-Net (88.59%), with a significantly lower loss value of 0.1681. The 90.60% Dice coefficient value of Dense-UNet outperformed U-Net by 11.07%. The F1-Score of Dense-UNet, U-Net, and Seg-Net was 93.35%, 90.02%, and 85.04%, respectively. Conclusions The deepened down-sampling path improved the ability of the model to capture cellular fined-detailed boundary features, while the symmetrical up-sampling path provided a more accurate location based on the test result. These results were the first time that the segmentation of MPM in vivo images had been adopted by introducing a deep CNN to bridge this gap in Dense-UNet technology. Dense-UNet has reached ultramodern performance for MPM images, especially for in vivo images with low resolution. This implementation supplies an automatic segmentation model based on deep learning for high-precision segmentation of MPM images in vivo.
Collapse
Affiliation(s)
- Sijing Cai
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China.,School of Information Science and Engineering, Fujian University of Technology, Fuzhou, China
| | - Yunxian Tian
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Centre, Vancouver, BC, Canada.,Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Harvey Lui
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Centre, Vancouver, BC, Canada.,Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Haishan Zeng
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Centre, Vancouver, BC, Canada.,Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Yi Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China.,Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou, China
| | - Guannan Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China.,Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou, China
| |
Collapse
|
33
|
Skin Lesion Segmentation Using Image Bit-Plane Multilayer Approach. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The establishment of automatic diagnostic systems able to detect and classify skin lesions at the initial stage are getting really relevant and effective in providing support for medical personnel during clinical assessment. Image segmentation has a determinant part in computer-aided skin lesion diagnosis pipeline because it makes possible to extract and highlight information on lesion contour texture as, for example, skewness and area unevenness. However, artifacts, low contrast, indistinct boundaries, and different shapes and areas contribute to make skin lesion segmentation a challenging task. In this paper, a fully automatic computer-aided system for skin lesion segmentation in dermoscopic images is indicated. Adopting this method, noise and artifacts are initially reduced by the singular value decomposition; afterward lesion decomposition into a frame of bit-plane layers is performed. A specific procedure is implemented for redundant data reduction using simple Boolean operators. Since lesion and background are rarely homogeneous regions, the obtained segmentation region could contain some disjointed areas classified as lesion. To obtain a single zone classified as lesion avoiding spurious pixels or holes inside the image under test, mathematical morphological techniques are implemented. The performance obtained highlights the method validity.
Collapse
|
34
|
Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network. SENSORS 2020; 20:s20061601. [PMID: 32183041 PMCID: PMC7147706 DOI: 10.3390/s20061601] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/23/2022]
Abstract
Clinical treatment of skin lesion is primarily dependent on timely detection and delimitation of lesion boundaries for accurate cancerous region localization. Prevalence of skin cancer is on the higher side, especially that of melanoma, which is aggressive in nature due to its high metastasis rate. Therefore, timely diagnosis is critical for its treatment before the onset of malignancy. To address this problem, medical imaging is used for the analysis and segmentation of lesion boundaries from dermoscopic images. Various methods have been used, ranging from visual inspection to the textural analysis of the images. However, accuracy of these methods is low for proper clinical treatment because of the sensitivity involved in surgical procedures or drug application. This presents an opportunity to develop an automated model with good accuracy so that it may be used in a clinical setting. This paper proposes an automated method for segmenting lesion boundaries that combines two architectures, the U-Net and the ResNet, collectively called Res-Unet. Moreover, we also used image inpainting for hair removal, which improved the segmentation results significantly. We trained our model on the ISIC 2017 dataset and validated it on the ISIC 2017 test set as well as the PH2 dataset. Our proposed model attained a Jaccard Index of 0.772 on the ISIC 2017 test set and 0.854 on the PH2 dataset, which are comparable results to the current available state-of-the-art techniques.
Collapse
|
35
|
A comparative study of features selection for skin lesion detection from dermoscopic images. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13721-019-0209-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Moradi N, Mahdavi-Amiri N. Kernel sparse representation based model for skin lesions segmentation and classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 182:105038. [PMID: 31437709 DOI: 10.1016/j.cmpb.2019.105038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Melanoma is a dangerous kind of skin disease with a high death rate, and its prevalence has increased rapidly in recent years. Diagnosis of melanoma in a primary phase can be helpful for its cure. Due to costs for dermatology, we need an automatic system to diagnose melanoma through lesion images. METHODS Here, we propose a sparse representation based method for segmentation and classification of lesion images. The main idea of our framework is based on a kernel sparse representation, which produces discriminative sparse codes to represent features in a high-dimensional feature space. Our novel formulation for discriminative kernel sparse coding jointly learns a kernel-based dictionary and a linear classifier. We also present an adaptive K-SVD algorithm for kernel dictionary and classifier learning. RESULTS We test our approach for both segmentation and classification tasks. The evaluation results on both dermoscopic and digital datasets demonstrate our approach to be competitive as compared to the available state-of-the-art methods, with the advantage of not needing any pre-processing. CONCLUSIONS Our method is insensitive to noise and image conditions and can be used effectively for challenging skin lesions. Our approach is so extensive to be adapted to various medical image segmentations.
Collapse
Affiliation(s)
- Nooshin Moradi
- Faculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.
| | - Nezam Mahdavi-Amiri
- Faculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
37
|
Wang X, Jiang X, Ding H, Liu J. Bi-directional Dermoscopic Feature Learning and Multi-scale Consistent Decision Fusion for Skin Lesion Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 29:3039-3051. [PMID: 31796409 DOI: 10.1109/tip.2019.2955297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accurate segmentation of skin lesion from dermoscopic images is a crucial part of computer-aided diagnosis of melanoma. It is challenging due to the fact that dermoscopic images from different patients have non-negligible lesion variation, which causes difficulties in anatomical structure learning and consistent skin lesion delineation. In this paper, we propose a novel bi-directional dermoscopic feature learning (biDFL) framework to model the complex correlation between skin lesions and their informative context. By controlling feature information passing through two complementary directions, a substantially rich and discriminative feature representation is achieved. Specifically, we place biDFL module on the top of a CNN network to enhance high-level parsing performance. Furthermore, we propose a multi-scale consistent decision fusion (mCDF) that is capable of selectively focusing on the informative decisions generated from multiple classification layers. By analysis of the consistency of the decision at each position, mCDF automatically adjusts the reliability of decisions and thus allows a more insightful skin lesion delineation. The comprehensive experimental results show the effectiveness of the proposed method on skin lesion segmentation, achieving state-of-the-art performance consistently on two publicly available dermoscopic image databases.
Collapse
|
38
|
Chatterjee S, Dey D, Munshi S. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 178:201-218. [PMID: 31416550 DOI: 10.1016/j.cmpb.2019.06.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/03/2019] [Accepted: 06/15/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Skin cancer is the commonest form of cancer in the worldwide population. Non-invasive and non-contact imaging modalities are being used for the screening of melanoma and other cutaneous malignancies to endorse early detection and prevention of the disease. Traditionally it has been a problem for medical personnel to differentiate melanoma, dysplastic nevi and basal cell carcinoma (BCC) diseases from one another due to the confusing appearance and similarity in the characteristics of the pigmented lesions. The paper reports an integrated method developed for identifying these skin diseases from the dermoscopic images. METHODS The proposed integrated computer-aided method has been employed for the identification of each of these diseases using recursive feature elimination (RFE) based layered structured multiclass image classification technique. Prior to the classification, different quantitative features have been extracted by analyzing the shape, the border irregularity, the texture and the color of the skin lesions, using different image processing tools. Primarily, a combination of gray level co-occurrence matrix (GLCM) and a proposed fractal-based regional texture analysis (FRTA) algorithm has been used for the quantification of textural information. The performance of the framework has been evaluated using a layered structure classification model using support vector machine (SVM) classifier with radial basis function (RBF). RESULTS The performance of the morphological skin lesion segmentation algorithm has been evaluated by estimating the pixel level sensitivity (Sen) of 0.9172, 0.9788 specificity (Spec), 0.9521 accuracy (ACU), along with the image similarity measuring indices as Jaccard similarity index (JSI) of 0.8562 and Dice similarity coefficient (DSC) of 0.9142 with respect to the corresponding ground truth (GT) images. The quantitative features extracted from the proposed feature extraction algorithms have been employed for the proposed multi-class skin disease identification. The proposed layered structure identifies all the three classes of skin diseases with a highly acceptable classification accuracy of 98.99%, 97.54% and 99.65% for melanoma, dysplastic nevi and BCC respectively. CONCLUSION To overcome the difficulties of proper diagnosis of diseases based on visual evaluation, the proposed integrated system plays an important role by quantifying the effective features and identifying the diseases with higher degree of accuracy. This combined approach of quantitative and qualitative analysis not only increases the diagnostic accuracy, but also provides some important information not obtainable from qualitative assessment alone.
Collapse
Affiliation(s)
| | - Debangshu Dey
- Electrical Engineering Department, Jadavpur University, Kolkata-700032, India
| | - Sugata Munshi
- Electrical Engineering Department, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
39
|
Abstract
Among the different types of skin cancer, melanoma is considered to be the deadliest and is difficult to treat at advanced stages. Detection of melanoma at earlier stages can lead to reduced mortality rates. Desktop-based computer-aided systems have been developed to assist dermatologists with early diagnosis. However, there is significant interest in developing portable, at-home melanoma diagnostic systems which can assess the risk of cancerous skin lesions. Here, we present a smartphone application that combines image capture capabilities with preprocessing and segmentation to extract the Asymmetry, Border irregularity, Color variegation, and Diameter (ABCD) features of a skin lesion. Using the feature sets, classification of malignancy is achieved through support vector machine classifiers. By using adaptive algorithms in the individual data-processing stages, our approach is made computationally light, user friendly, and reliable in discriminating melanoma cases from benign ones. Images of skin lesions are either captured with the smartphone camera or imported from public datasets. The entire process from image capture to classification runs on an Android smartphone equipped with a detachable 10x lens, and processes an image in less than a second. The overall performance metrics are evaluated on a public database of 200 images with Synthetic Minority Over-sampling Technique (SMOTE) (80% sensitivity, 90% specificity, 88% accuracy, and 0.85 area under curve (AUC)) and without SMOTE (55% sensitivity, 95% specificity, 90% accuracy, and 0.75 AUC). The evaluated performance metrics and computation times are comparable or better than previous methods. This all-inclusive smartphone application is designed to be easy-to-download and easy-to-navigate for the end user, which is imperative for the eventual democratization of such medical diagnostic systems.
Collapse
|
40
|
Roja Ramani D, Ranjani SS. An Efficient Melanoma Diagnosis Approach Using Integrated HMF Multi-Atlas Map Based Segmentation. J Med Syst 2019; 43:225. [PMID: 31190229 DOI: 10.1007/s10916-019-1315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Melanoma is a life threading disease when it grows outside the corium layer of the skin. Mortality rates of the Melanoma cases are maximum among the skin cancer patients. The cost required for the treatment of advanced melanoma cases is very high and the survival rate is low. Numerous computerized dermoscopy systems are developed based on the combination of shape, texture and color features to facilitate early diagnosis of melanoma. The availability and cost of the dermoscopic imaging system is still an issue. To mitigate this issue, this paper presented an integrated segmentation and Third Dimensional (3D) feature extraction approach for the accurate diagnosis of melanoma. A multi-atlas method is applied for the image segmentation. The patch-based label fusion model is expressed in a Bayesian framework to improve the segmentation accuracy. A depth map is obtained from the Two-dimensional (2D) dermoscopic image for reconstructing the 3D skin lesion represented as structure tensors. The 3D shape features including the relative depth features are obtained. Streaks are the significant morphological terms of the melanoma in the radial growth phase. The proposed method yields maximum segmentation accuracy, sensibility, specificity and minimum cost function than the existing segmentation technique and classifier.
Collapse
Affiliation(s)
- D Roja Ramani
- Department of Information Technology, Sethu Institute of Technology, Virudhunagar, India.
| | - S Siva Ranjani
- Department of Computer Science and Engineering, Sethu Institute of Technology, Virudhunagar, India
| |
Collapse
|
41
|
Automatic skin lesions segmentation based on a new morphological approach via geodesic active contour. COGN SYST RES 2019. [DOI: 10.1016/j.cogsys.2018.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Navarro F, Escudero-Vinolo M, Bescos J. Accurate Segmentation and Registration of Skin Lesion Images to Evaluate Lesion Change. IEEE J Biomed Health Inform 2019; 23:501-508. [DOI: 10.1109/jbhi.2018.2825251] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Garcia-Arroyo JL, Garcia-Zapirain B. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 168:11-19. [PMID: 30527129 DOI: 10.1016/j.cmpb.2018.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND OBJECTIVE To ensure proper functioning of a Computer Aided Diagnosis (CAD) system for melanoma detection in dermoscopy images, it is important to accurately detect the border of the lesion. This paper proposes a method developed by the authors to address this problem. METHODS The algorithm for segmentation of skin lesions in dermoscopy images is based on fuzzy classification of pixels and subsequent histogram thresholding. RESULTS This method participated in the 2016 and 2017 ISBI (International Symposium on Biomedical Imaging) Challenges, hosted by the ISIC (International Skin Imaging Collaboration). It was tested against two public databases containing 379 and 600 images respectively, and compared using the same defined metrics (Accuracy, Dice Coefficient, Jaccard Index, Sensitivity and Specificity) with the rest of participating state-of-the-art work, obtaining good results: (0.934, 0.869, 0.791, 0.870 and 0.978) and (0.884, 0.760, 0.665, 0.869 and 0.923) respectively, ranking 9th and 15th out of a total of 21 and 28 participants respectively using the Jaccard Index (which was the indicator used as a basis for ranking) and the 1st in the 2017 Challenge using the Sensitivity. CONCLUSION The method has been proven to be robust and reliable. It's main contribution is the very design of the algorithm, highly innovative, which could also be used to deal with other segmentation problems of a similar nature.
Collapse
Affiliation(s)
- Jose Luis Garcia-Arroyo
- Deustotech-LIFE Unit (eVIDA), University of Deusto Avda. Universidades, 24. 48007 Bilbao, Spain.
| | - Begonya Garcia-Zapirain
- Deustotech-LIFE Unit (eVIDA), University of Deusto Avda. Universidades, 24. 48007 Bilbao, Spain.
| |
Collapse
|
44
|
Tschandl P, Sinz C, Kittler H. Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation. Comput Biol Med 2019; 104:111-116. [DOI: 10.1016/j.compbiomed.2018.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
45
|
Drulyte I, Ruzgas T, Raisutis R, Valiukeviciene S, Linkeviciute G. Application of automatic statistical post-processing method for analysis of ultrasonic and digital dermatoscopy images. Libyan J Med 2018; 13:1479600. [PMID: 29943665 PMCID: PMC6022253 DOI: 10.1080/19932820.2018.1479600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/12/2018] [Indexed: 11/06/2022] Open
Abstract
Ultrasonic and digital dermatoscopy diagnostic methods are used in order to estimate the changes of structure, as well as to non-invasively measure the changes of parameters of lesions of human tissue. These days, it is very actual to perform the quantitative analysis of medical data, which allows to achieve the reliable early-stage diagnosis of lesions and help to save more lives. The proposed automatic statistical post-processing method based on integration of ultrasonic and digital dermatoscopy measurements is intended to estimate the parameters of malignant tumours, measure spatial dimensions (e.g. thickness) and shape, and perform faster diagnostics by increasing the accuracy of tumours differentiation. It leads to optimization of time-consuming analysis procedures of medical images and could be used as a reliable decision support tool in the field of dermatology.
Collapse
Affiliation(s)
- Indre Drulyte
- Prof. K. Baršauskas Ultrasound Research Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Tomas Ruzgas
- Department of Applied Mathematics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Kaunas, Lithuania
| | - Renaldas Raisutis
- Prof. K. Baršauskas Ultrasound Research Institute, Kaunas University of Technology, Kaunas, Lithuania
- Department of Electrical Power systems, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Kaunas, Lithuania
| | - Skaidra Valiukeviciene
- Department of Skin and Venereal Diseases, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gintare Linkeviciute
- Department of Skin and Venereal Diseases, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
46
|
Wahba MA, Ashour AS, Guo Y, Napoleon SA, Elnaby MMA. A novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 165:163-174. [PMID: 30337071 DOI: 10.1016/j.cmpb.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Melanoma is one of the major death causes while basal cell carcinoma (BCC) is the utmost incident skin lesion type. At their early stages, medical experts may be confused between both types with benign nevus and pigmented benign keratoses (BKL). This inspired the current study to develop an accurate automated, user-friendly skin lesion identification system. METHODS The current work targets a novel discrimination technique of four pre-mentioned skin lesion classes. A novel proposed texture feature, named cumulative level-difference mean (CLDM) based on the gray-level difference method (GLDM) is extracted. The asymmetry, border irregularity, color variation and diameter are summed up as the ABCD rule feature vector is originally used to classify the melanoma from benign lesions. The proposed method improved the ABCD rule to also classify BCC and BKL by using the proposed modified-ABCD feature vector. In the modified set of ABCD features, each border feature, such as compact index, fractal dimension, and edge abruptness is considered a separate feature. Then, the composite feature vector having the pre-mentioned features is ranked using the Eigenvector Centrality (ECFS) feature ranking method. The ranked features are then classified by a cubic support vector machine for different numbers of selected features. RESULTS The proposed CLDM texture features combined with the ranked ABCD features achieved outstanding performance to classify the four targeted classes (melanoma, BCC, nevi and BKL). The results report 100% outstanding performance of the sensitivity, accuracy and specificity per each class compared to other features when using the highest seven ranked features. CONCLUSIONS The proposed system established that Melanoma, BCC, nevus and BKL are efficiently classified using cubic SVM with the new feature set. In addition, the comparative studies proved the superiority of the cubic SVM to classify the four classes.
Collapse
MESH Headings
- Algorithms
- Carcinoma, Basal Cell/classification
- Carcinoma, Basal Cell/diagnostic imaging
- Carcinoma, Basal Cell/pathology
- Carcinoma, Squamous Cell/classification
- Carcinoma, Squamous Cell/diagnostic imaging
- Carcinoma, Squamous Cell/pathology
- Databases, Factual
- Dermoscopy/methods
- Diagnosis, Computer-Assisted/methods
- Diagnosis, Computer-Assisted/statistics & numerical data
- Diagnosis, Differential
- Fractals
- Humans
- Image Interpretation, Computer-Assisted/methods
- Image Interpretation, Computer-Assisted/statistics & numerical data
- Keratosis/classification
- Keratosis/diagnostic imaging
- Keratosis/pathology
- Melanoma/classification
- Melanoma/diagnostic imaging
- Melanoma/pathology
- Nevus, Pigmented/classification
- Nevus, Pigmented/diagnostic imaging
- Nevus, Pigmented/pathology
- Pattern Recognition, Automated/methods
- Pattern Recognition, Automated/statistics & numerical data
- Skin/diagnostic imaging
- Skin/pathology
- Skin Diseases/classification
- Skin Diseases/diagnostic imaging
- Skin Diseases/pathology
- Skin Neoplasms/classification
- Skin Neoplasms/diagnostic imaging
- Skin Neoplasms/pathology
- Support Vector Machine
Collapse
Affiliation(s)
- Maram A Wahba
- Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt
| | - Amira S Ashour
- Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt
| | - Yanhui Guo
- Department of Computer Science, University of Illinois at Springfield, Springfield, IL, USA.
| | - Sameh A Napoleon
- Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt
| | - Mustafa M Abd Elnaby
- Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt
| |
Collapse
|
47
|
Fujisawa Y, Otomo Y, Ogata Y, Nakamura Y, Fujita R, Ishitsuka Y, Watanabe R, Okiyama N, Ohara K, Fujimoto M. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br J Dermatol 2018; 180:373-381. [PMID: 29953582 DOI: 10.1111/bjd.16924] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Application of deep-learning technology to skin cancer classification can potentially improve the sensitivity and specificity of skin cancer screening, but the number of training images required for such a system is thought to be extremely large. OBJECTIVES To determine whether deep-learning technology could be used to develop an efficient skin cancer classification system with a relatively small dataset of clinical images. METHODS A deep convolutional neural network (DCNN) was trained using a dataset of 4867 clinical images obtained from 1842 patients diagnosed with skin tumours at the University of Tsukuba Hospital from 2003 to 2016. The images consisted of 14 diagnoses, including both malignant and benign conditions. Its performance was tested against 13 board-certified dermatologists and nine dermatology trainees. RESULTS The overall classification accuracy of the trained DCNN was 76·5%. The DCNN achieved 96·3% sensitivity (correctly classified malignant as malignant) and 89·5% specificity (correctly classified benign as benign). Although the accuracy of malignant or benign classification by the board-certified dermatologists was statistically higher than that of the dermatology trainees (85·3% ± 3·7% and 74·4% ± 6·8%, P < 0·01), the DCNN achieved even greater accuracy, as high as 92·4% ± 2·1% (P < 0·001). CONCLUSIONS We have developed an efficient skin tumour classifier using a DCNN trained on a relatively small dataset. The DCNN classified images of skin tumours more accurately than board-certified dermatologists. Collectively, the current system may have capabilities for screening purposes in general medical practice, particularly because it requires only a single clinical image for classification.
Collapse
Affiliation(s)
- Y Fujisawa
- Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577
| | - Y Otomo
- Kyocera Communications System Co., Ltd, Kyoto, Japan
| | - Y Ogata
- KCCS Mobile Engineering Co., Ltd, Tokyo, Japan
| | - Y Nakamura
- Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577
| | - R Fujita
- Kyocera Communications System Co., Ltd, Kyoto, Japan
| | - Y Ishitsuka
- Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577
| | - R Watanabe
- Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577
| | - N Okiyama
- Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577
| | - K Ohara
- Dermatology, Akasaka Toranomon Clinic, Tokyo, Japan
| | - M Fujimoto
- Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577
| |
Collapse
|
48
|
Amoabedini A, Farsani MS, Saberkari H, Aminian E. Employing the Local Radon Transform for Melanoma Segmentation in Dermoscopic Images. JOURNAL OF MEDICAL SIGNALS & SENSORS 2018; 8:184-194. [PMID: 30181967 PMCID: PMC6116320 DOI: 10.4103/jmss.jmss_40_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, the number of patients suffering from melanoma, as the deadliest type of skin cancer, has grown significantly in the world. The most common technique to observe and diagnosis of such cancer is the use of noninvasive dermoscope lens. Since this approach is based on the expert ocular inference, early stage of melanoma diagnosis is a difficult task for dermatologist. The main purpose of this article is to introduce an efficient algorithm to analyze the dermoscopic images. The proposed algorithm consists of four stages including converting the image color space from the RGB to CIE, adjusting the color space by applying the combined histogram equalization and the Otsu thresholding-based approach, border extraction of the lesion through the local Radon transform, and recognizing the melanoma and nonmelanoma lesions employing the ABCD rule. Simulation results in the designed user-friendly software package environment confirmed that the proposed algorithm has the higher quantities of accuracy, sensitivity, and approximation correlation in comparison with the other state-of-the-art methods. These values are obtained 98.81 (98.92), 94.85 (89.51), and 90.99 (86.06) for melanoma (nonmelanoma) lesions, respectively.
Collapse
Affiliation(s)
- Alireza Amoabedini
- Department of Computer Engineering, Safadasht Branch, Islamic Azad University, Tehran, Iran
| | | | - Hamidreza Saberkari
- Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Ehsan Aminian
- Department of Computer Engineering, Safadasht Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
49
|
An image segmentation method based on Mumford–Shah model with mask factor and neighborhood factor. Pattern Anal Appl 2018. [DOI: 10.1007/s10044-018-0730-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Guarracino MR, Maddalena L. SDI+: A Novel Algorithm for Segmenting Dermoscopic Images. IEEE J Biomed Health Inform 2018; 23:481-488. [PMID: 29994446 DOI: 10.1109/jbhi.2018.2808970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malignant skin lesions are among the most common types of cancer, and automated systems for their early detection are of fundamental importance. We propose SDI+, an unsupervised algorithm for the segmentation of skin lesions in dermoscopic images. It is articulated into three steps, aimed at extracting preliminary information on possible confounding factors, accurately segmenting the lesion, and post-processing the result. The overall method achieves high accuracy on dark skin lesions and can handle several cases where confounding factors could inhibit a clear understanding by a human operator. We present extensive experimental results and comparisons achieved by the SDI+ algorithm on the ISIC 2017 dataset, highlighting the advantages and disadvantages.
Collapse
|