1
|
Wang C, Kumar TS, De Raedt W, Camps G, Hallez H, Vanrumste B. Eating Speed Measurement Using Wrist-Worn IMU Sensors Towards Free-Living Environments. IEEE J Biomed Health Inform 2024; 28:5816-5828. [PMID: 38959146 DOI: 10.1109/jbhi.2024.3422875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Eating speed is an important indicator that has been widely investigated in nutritional studies. The relationship between eating speed and several intake-related problems such as obesity, diabetes, and oral health has received increased attention from researchers. However, existing studies mainly use self-reported questionnaires to obtain participants' eating speed, where they choose options from slow, medium, and fast. Such a non-quantitative method is highly subjective and coarse at the individual level. This study integrates two classical tasks in automated food intake monitoring domain: bite detection and eating episode detection, to advance eating speed measurement in near-free-living environments automatically and objectively. Specifically, a temporal convolutional network combined with a multi-head attention module (TCN-MHA) is developed to detect bites (including eating and drinking gestures) from IMU data. The predicted bite sequences are then clustered into eating episodes. Eating speed is calculated by using the time taken to finish the eating episode to divide the number of bites. To validate the proposed approach on eating speed measurement, a 7-fold cross validation is applied to the self-collected fine-annotated full-day-I (FD-I) dataset, and a holdout experiment is conducted on the full-day-II (FD-II) dataset. The two datasets are collected from 61 participants with a total duration of 513 h, which are publicly available. Experimental results show that the proposed approach achieves a mean absolute percentage error (MAPE) of 0.110 and 0.146 in the FD-I and FD-II datasets, respectively, showcasing the feasibility of automated eating speed measurement in near-free-living environments.
Collapse
|
2
|
Wang C, T SK, De Raedt W, Camps G, Hallez H, Vanrumste B. Eat-Radar: Continuous Fine-Grained Intake Gesture Detection Using FMCW Radar and 3D Temporal Convolutional Network With Attention. IEEE J Biomed Health Inform 2024; 28:1000-1011. [PMID: 38051610 DOI: 10.1109/jbhi.2023.3339703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Unhealthy dietary habits are considered as the primary cause of various chronic diseases, including obesity and diabetes. The automatic food intake monitoring system has the potential to improve the quality of life (QoL) of people with diet-related diseases through dietary assessment. In this work, we propose a novel contactless radar-based approach for food intake monitoring. Specifically, a Frequency Modulated Continuous Wave (FMCW) radar sensor is employed to recognize fine-grained eating and drinking gestures. The fine-grained eating/drinking gesture contains a series of movements from raising the hand to the mouth until putting away the hand from the mouth. A 3D temporal convolutional network with self-attention (3D-TCN-Att) is developed to detect and segment eating and drinking gestures in meal sessions by processing the Range-Doppler Cube (RD Cube). Unlike previous radar-based research, this work collects data in continuous meal sessions (more realistic scenarios). We create a public dataset comprising 70 meal sessions (4,132 eating gestures and 893 drinking gestures) from 70 participants with a total duration of 1,155 minutes. Four eating styles (fork & knife, chopsticks, spoon, hand) are included in this dataset. To validate the performance of the proposed approach, seven-fold cross-validation method is applied. The 3D-TCN-Att model achieves a segmental F1-score of 0.896 and 0.868 for eating and drinking gestures, respectively. The results of the proposed approach indicate the feasibility of using radar for fine-grained eating and drinking gesture detection and segmentation in meal sessions.
Collapse
|
3
|
Namkhah Z, Fatemi SF, Mansoori A, Nosratabadi S, Ghayour-Mobarhan M, Sobhani SR. Advancing sustainability in the food and nutrition system: a review of artificial intelligence applications. Front Nutr 2023; 10:1295241. [PMID: 38035357 PMCID: PMC10687214 DOI: 10.3389/fnut.2023.1295241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Promoting sustainability in food and nutrition systems is essential to address the various challenges and trade-offs within the current food system. This imperative is guided by key principles and actionable steps, including enhancing productivity and efficiency, reducing waste, adopting sustainable agricultural practices, improving economic growth and livelihoods, and enhancing resilience at various levels. However, in order to change the current food consumption patterns of the world and move toward sustainable diets, as well as increase productivity in the food production chain, it is necessary to employ the findings and achievements of other sciences. These include the use of artificial intelligence-based technologies. Presented here is a narrative review of possible applications of artificial intelligence in the food production chain that could increase productivity and sustainability. In this study, the most significant roles that artificial intelligence can play in enhancing the productivity and sustainability of the food and nutrition system have been examined in terms of production, processing, distribution, and food consumption. The research revealed that artificial intelligence, a branch of computer science that uses intelligent machines to perform tasks that require human intelligence, can significantly contribute to sustainable food security. Patterns of production, transportation, supply chain, marketing, and food-related applications can all benefit from artificial intelligence. As this review of successful experiences indicates, artificial intelligence, machine learning, and big data are a boon to the goal of sustainable food security as they enable us to achieve our goals more efficiently.
Collapse
Affiliation(s)
- Zahra Namkhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Fatemi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mansoori
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Nosratabadi
- Department of Nutrition, Electronic Health and Statistics Surveillance Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Sobhani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Hiraguchi H, Perone P, Toet A, Camps G, Brouwer AM. Technology to Automatically Record Eating Behavior in Real Life: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:7757. [PMID: 37765812 PMCID: PMC10534458 DOI: 10.3390/s23187757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
To monitor adherence to diets and to design and evaluate nutritional interventions, it is essential to obtain objective knowledge about eating behavior. In most research, measures of eating behavior are based on self-reporting, such as 24-h recalls, food records (food diaries) and food frequency questionnaires. Self-reporting is prone to inaccuracies due to inaccurate and subjective recall and other biases. Recording behavior using nonobtrusive technology in daily life would overcome this. Here, we provide an up-to-date systematic overview encompassing all (close-to) publicly or commercially available technologies to automatically record eating behavior in real-life settings. A total of 1328 studies were screened and, after applying defined inclusion and exclusion criteria, 122 studies were included for in-depth evaluation. Technologies in these studies were categorized by what type of eating behavior they measure and which type of sensor technology they use. In general, we found that relatively simple sensors are often used. Depending on the purpose, these are mainly motion sensors, microphones, weight sensors and photo cameras. While several of these technologies are commercially available, there is still a lack of publicly available algorithms that are needed to process and interpret the resulting data. We argue that future work should focus on developing robust algorithms and validating these technologies in real-life settings. Combining technologies (e.g., prompting individuals for self-reports at sensed, opportune moments) is a promising route toward ecologically valid studies of eating behavior.
Collapse
Affiliation(s)
- Haruka Hiraguchi
- TNO Human Factors, Netherlands Organization for Applied Scientific Research, Kampweg 55, 3769 DE Soesterberg, The Netherlands (A.-M.B.)
- Kikkoman Europe R&D Laboratory B.V., Nieuwe Kanaal 7G, 6709 PA Wageningen, The Netherlands
| | - Paola Perone
- TNO Human Factors, Netherlands Organization for Applied Scientific Research, Kampweg 55, 3769 DE Soesterberg, The Netherlands (A.-M.B.)
| | - Alexander Toet
- TNO Human Factors, Netherlands Organization for Applied Scientific Research, Kampweg 55, 3769 DE Soesterberg, The Netherlands (A.-M.B.)
| | - Guido Camps
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- OnePlanet Research Center, Plus Ultra II, Bronland 10, 6708 WE Wageningen, The Netherlands
| | - Anne-Marie Brouwer
- TNO Human Factors, Netherlands Organization for Applied Scientific Research, Kampweg 55, 3769 DE Soesterberg, The Netherlands (A.-M.B.)
- Department of Artificial Intelligence, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| |
Collapse
|
5
|
Côté M, Lamarche B. Artificial intelligence in nutrition research: perspectives on current and future applications. Appl Physiol Nutr Metab 2021; 47:1-8. [PMID: 34525321 DOI: 10.1139/apnm-2021-0448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial intelligence (AI) is a rapidly evolving area that offers unparalleled opportunities of progress and applications in many healthcare fields. In this review, we provide an overview of the main and latest applications of AI in nutrition research and identify gaps to address to potentialize this emerging field. AI algorithms may help better understand and predict the complex and non-linear interactions between nutrition-related data and health outcomes, particularly when large amounts of data need to be structured and integrated, such as in metabolomics. AI-based approaches, including image recognition, may also improve dietary assessment by maximizing efficiency and addressing systematic and random errors associated with self-reported measurements of dietary intakes. Finally, AI applications can extract, structure and analyze large amounts of data from social media platforms to better understand dietary behaviours and perceptions among the population. In summary, AI-based approaches will likely improve and advance nutrition research as well as help explore new applications. However, further research is needed to identify areas where AI does deliver added value compared with traditional approaches, and other areas where AI is simply not likely to advance the field. Novelty: Artificial intelligence offers unparalleled opportunities of progress and applications in nutrition. There remain gaps to address to potentialize this emerging field.
Collapse
Affiliation(s)
- Mélina Côté
- Centre de recherche Nutrition, santé et société (NUTRISS), INAF, Université Laval, Québec, QC, Canada
- School of Nutrition, Université Laval, Québec, QC, Canada
| | - Benoît Lamarche
- Centre de recherche Nutrition, santé et société (NUTRISS), INAF, Université Laval, Québec, QC, Canada
- School of Nutrition, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Kirk D, Catal C, Tekinerdogan B. Precision nutrition: A systematic literature review. Comput Biol Med 2021; 133:104365. [PMID: 33866251 DOI: 10.1016/j.compbiomed.2021.104365] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/04/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022]
Abstract
Precision Nutrition research aims to use personal information about individuals or groups of individuals to deliver nutritional advice that, theoretically, would be more suitable than generic advice. Machine learning, a subbranch of Artificial Intelligence, has promise to aid in the development of predictive models that are suitable for Precision Nutrition. As such, recent research has applied machine learning algorithms, tools, and techniques in precision nutrition for different purposes. However, a systematic overview of the state-of-the-art on the use of machine learning in Precision Nutrition is lacking. Therefore, we carried out a Systematic Literature Review (SLR) to provide an overview of where and how machine learning has been used in Precision Nutrition from various aspects, what such machine learning models use as input features, what the availability status of the data used in the literature is, and how the models are evaluated. Nine research questions were defined in this study. We retrieved 4930 papers from electronic databases and 60 primary studies were selected to respond to the research questions. All of the selected primary studies were also briefly discussed in this article. Our results show that fifteen problems spread across seven domains of nutrition and health are present. Four machine learning tasks are seen in the form of regression, classification, recommendation and clustering, with most of these utilizing a supervised approach. In total, 30 algorithms were used, with 19 appearing more than once. Models were through the use of four groups of approaches and 23 evaluation metrics. Personalized approaches are promising to reduce the burden of these current problems in nutrition research, and the current review shows Machine Learning can be incorporated into Precision Nutrition research with high performance. Precision Nutrition researchers should consider incorporating Machine Learning into their methods to facilitate the integration of many complex features, allowing for the development of high-performance Precision Nutrition approaches.
Collapse
Affiliation(s)
- Daniel Kirk
- Information Technology Group, Wageningen University and Research, Wageningen, the Netherlands.
| | - Cagatay Catal
- Department of Computer Science and Engineering, Qatar University, Doha, Qatar.
| | - Bedir Tekinerdogan
- Information Technology Group, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|