1
|
Agrawal R, Dhule C, Shukla G, Singh S, Agrawal U, Alsubaie N, Alqahtani MS, Abbas M, Soufiene BO. Design of EEG based thought identification system using EMD & deep neural network. Sci Rep 2024; 14:26621. [PMID: 39496663 PMCID: PMC11535384 DOI: 10.1038/s41598-024-64961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/14/2024] [Indexed: 11/06/2024] Open
Abstract
Biological communication system for neurological disorder patients is similar to the Brain Computer Interface in a way that it facilitates the connection to the outside world in real time. The interdisciplinary field of Electroencephalogram based message depiction is gaining importance as it assists the paralysed person to communicate. In the proposed method a novel approach of feature extraction is done by Empirical Mode Decomposition on non- stationary & non-linear kind of EEG signal. EMD helps in the effective time frequency analysis by disintegrating the EEG signal in the form of six Intrinsic Mode Functions with help of the frequency components. In all nine features are extracted from the decomposed IMFs so as to predict the states or messages of the patient. The above computed features are then served to the Deep Neural Network to perform the classification. The performance of suggested method is studied through applying it to the acquired database generated by the designed hardware as well as also in real time message depiction. The maximum classification accuracy 97% for the acquired database & 85% in real time are obtained respectively by comparative analysis. The command messages generated from the proposed system helps the person suffering from neurological disorder to establish the communication link with the outside world in an efficient way. Thus, the proposed novel method shows better performance in real time message depiction purpose as related to other existing methods.
Collapse
Affiliation(s)
- Rahul Agrawal
- Department of Data Science, IoT, Cybersecurity (DIC), G H Raisoni College of Engineering, Nagpur, Maharashtra, India
| | - Chetan Dhule
- Department of Data Science, IoT, Cybersecurity (DIC), G H Raisoni College of Engineering, Nagpur, Maharashtra, India
| | - Garima Shukla
- Department of Computer Science Engineering, Amity School of Engineering & Technology, Amity University, Maharashtra, India
| | - Sofia Singh
- Department of AI, Amity School of Engineering & Technology, Amity University, Noida, India
| | - Urvashi Agrawal
- Department of Electronics & Telecommunication Engineering, Jhulelal Institute of Technology, Nagpur, India
| | - Najah Alsubaie
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- Space Research Centre, BioImaging Unit, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Ben Othman Soufiene
- PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse, Tunisia.
| |
Collapse
|
2
|
Hu B, Wang Y, Mu J. A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:144-169. [PMID: 38303417 DOI: 10.3934/mbe.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Recently, fuzzy dispersion entropy (DispEn) has attracted much attention as a new nonlinear dynamics method that combines the advantages of both DispEn and fuzzy entropy. However, it suffers from limitation of insensitivity to dynamic changes. To solve this limitation, we proposed fractional fuzzy dispersion entropy (FFDispEn) based on DispEn, a novel fuzzy membership function and fractional calculus. The fuzzy membership function was defined based on the Euclidean distance between the embedding vector and dispersion pattern. Simulated signals generated by the one-dimensional (1D) logistic map were used to test the sensitivity of the proposed method to dynamic changes. Moreover, 29 subjects were recruited for an upper limb muscle fatigue experiment, during which surface electromyography (sEMG) signals of the biceps brachii muscle were recorded. Both simulated signals and sEMG signals were processed using a sliding window approach. Sample entropy (SampEn), DispEn and FFDispEn were separately used to calculate the complexity of each frame. The sensitivity of different algorithms to the muscle fatigue process was analyzed using fitting parameters through linear fitting of the complexity of each frame signal. The results showed that for simulated signals, the larger the fractional order q, the higher the sensitivity to dynamic changes. Moreover, DispEn performed poorly in the sensitivity to dynamic changes compared with FFDispEn. As for muscle fatigue detection, the FFDispEn value showed a clear declining tendency with a mean slope of -1.658 × 10-3 as muscle fatigue progresses; additionally, it was more sensitive to muscle fatigue compared with SampEn (slope: -0.4156 × 10-3) and DispEn (slope: -0.1675 × 10-3). The highest accuracy of 97.5% was achieved with the FFDispEn and support vector machine (SVM). This study provided a new useful nonlinear dynamic indicator for sEMG signal processing and muscle fatigue analysis. The proposed method may be useful for physiological and biomedical signal analysis.
Collapse
Affiliation(s)
- Baohua Hu
- School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601, China
| | - Yong Wang
- School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jingsong Mu
- School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei 230036, China
| |
Collapse
|
3
|
Yu G, Deng Z, Bao Z, Zhang Y, He B. Gesture Classification in Electromyography Signals for Real-Time Prosthetic Hand Control Using a Convolutional Neural Network-Enhanced Channel Attention Model. Bioengineering (Basel) 2023; 10:1324. [PMID: 38002448 PMCID: PMC10669079 DOI: 10.3390/bioengineering10111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Accurate and real-time gesture recognition is required for the autonomous operation of prosthetic hand devices. This study employs a convolutional neural network-enhanced channel attention (CNN-ECA) model to provide a unique approach for surface electromyography (sEMG) gesture recognition. The introduction of the ECA module improves the model's capacity to extract features and focus on critical information in the sEMG data, thus simultaneously equipping the sEMG-controlled prosthetic hand systems with the characteristics of accurate gesture detection and real-time control. Furthermore, we suggest a preprocessing strategy for extracting envelope signals that incorporates Butterworth low-pass filtering and the fast Hilbert transform (FHT), which can successfully reduce noise interference and capture essential physiological information. Finally, the majority voting window technique is adopted to enhance the prediction results, further improving the accuracy and stability of the model. Overall, our multi-layered convolutional neural network model, in conjunction with envelope signal extraction and attention mechanisms, offers a promising and innovative approach for real-time control systems in prosthetic hands, allowing for precise fine motor actions.
Collapse
Affiliation(s)
- Guangjie Yu
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (G.Y.); (Z.D.); (Z.B.)
| | - Ziting Deng
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (G.Y.); (Z.D.); (Z.B.)
| | - Zhenchen Bao
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (G.Y.); (Z.D.); (Z.B.)
| | - Yue Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (G.Y.); (Z.D.); (Z.B.)
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, China
| | - Bingwei He
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (G.Y.); (Z.D.); (Z.B.)
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, China
| |
Collapse
|
4
|
Variational mode decomposition for surface and intramuscular EMG signal denoising. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Boyer M, Bouyer L, Roy JS, Campeau-Lecours A. Reducing Noise, Artifacts and Interference in Single-Channel EMG Signals: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2927. [PMID: 36991639 PMCID: PMC10059683 DOI: 10.3390/s23062927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Electromyography (EMG) is gaining importance in many research and clinical applications, including muscle fatigue detection, control of robotic mechanisms and prostheses, clinical diagnosis of neuromuscular diseases and quantification of force. However, EMG signals can be contaminated by various types of noise, interference and artifacts, leading to potential data misinterpretation. Even assuming best practices, the acquired signal may still contain contaminants. The aim of this paper is to review methods employed to reduce the contamination of single channel EMG signals. Specifically, we focus on methods which enable a full reconstruction of the EMG signal without loss of information. This includes subtraction methods used in the time domain, denoising methods performed after the signal decomposition and hybrid approaches that combine multiple methods. Finally, this paper provides a discussion on the suitability of the individual methods based on the type of contaminant(s) present in the signal and the specific requirements of the application.
Collapse
Affiliation(s)
- Marianne Boyer
- Department of Mechanical Engineering, Université Laval, Québec, QC G1V 0A6, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Québec, QC G1M 2S8, Canada
| | - Laurent Bouyer
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Québec, QC G1M 2S8, Canada
- Department of Rehabilitation, Université Laval, Québec, QC G1 V0A, Canada
| | - Jean-Sébastien Roy
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Québec, QC G1M 2S8, Canada
- Department of Rehabilitation, Université Laval, Québec, QC G1 V0A, Canada
| | - Alexandre Campeau-Lecours
- Department of Mechanical Engineering, Université Laval, Québec, QC G1V 0A6, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Québec, QC G1M 2S8, Canada
| |
Collapse
|
6
|
Chen J, Li H, Ma L, Soong F. DEEMD-SPP: A Novel Framework for Emotion Recognition Based on EEG Signals. Front Psychiatry 2022; 13:885120. [PMID: 35573327 PMCID: PMC9091650 DOI: 10.3389/fpsyt.2022.885120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) is one of the most widely-used biosignal capturing technology for investigating brain activities, cognitive diseases, and affective disorders. To understand the underlying principles of brain activities and affective disorders using EEG data, one of the fundamental tasks is to accurately identify emotions from EEG signals, which has attracted huge attention in the field of affective computing. To improve the accuracy and effectiveness of emotion recognition based on EEG data, previous studies have successfully developed numerous feature extraction methods and classifiers. Among them, ensemble empirical mode decomposition (EEMD) is an efficient signal decomposition technique for extracting EEG features. It can alleviate the mode-mixing problem by adding white noise to the source signal. However, there remain some issues when applying this method to recognition tasks. As the added noise cannot be filtered completely, spurious modes are generated due to the residual noise. Therefore, it is crucial to perform intrinsic mode function (IMF) selection to find the most valuable IMF components that represent brain activities. Furthermore, the number of decomposed IMFs is various to different original signals, thus how to unify feature dimensions needs better solutions. To solve these issues, we propose a novel forecasting framework, named DEEMD-SPP, to identify emotions from EEG signals, based on the combination of denoising ensemble empirical mode decomposition (DEEMD) and Spatial Pyramid Pooling Network (SPP-Net). First, DEEMD is proposed to decompose the EEG signals, which effectively eliminates residual noise in the IMFs and selects the most valuable IMFs. Second, time-domain and frequency-domain features are extracted from the selected IMFs. Finally, SPP-net is employed as the classifier to recognize emotions, which can effectively transform various-sized feature maps into fixed-sized feature vectors through the pyramid pooling layer. The experimental results demonstrate that our proposed DEEMD-SPP framework can effectively reduce the effect of spike-in white noise, accurately extract EEG features, and significantly improve the performance of emotion recognition.
Collapse
Affiliation(s)
- Jing Chen
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Haifeng Li
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Lin Ma
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Frank Soong
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China.,Speech Group, Microsoft Research Asia, Beijing, China
| |
Collapse
|
7
|
A Novel EMG-Based Hand Gesture Recognition Framework Based on Multivariate Variational Mode Decomposition. SENSORS 2021; 21:s21217002. [PMID: 34770309 PMCID: PMC8588500 DOI: 10.3390/s21217002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Surface electromyography (sEMG) is a kind of biological signal that records muscle activity noninvasively, which is of great significance in advanced human-computer interaction, prosthetic control, clinical therapy, and biomechanics. However, the number of hand gestures that can be recognized is limited and the recognition accuracy needs to be further improved. These factors lead to the fact that sEMG products are not widely used in practice. The main contributions of this paper are as follows. Firstly, considering the increasing number of gestures to be recognized and the complexity of gestures, an extensible two-stage machine learning lightweight framework was innovatively proposed for multi-gesture task recognition. Secondly, the multivariate variational mode decomposition (MVMD) is applied to extract the spatial–temporal features from the multiple channels to the EMG signals, and the separable convolutional neural network is used for modelling. In this work, the experimental results for 52 hand gestures recognition task show that the average accuracy on each stage is about 90%. The potential movement information is mainly contained in the low-frequency oscillator of the sEMG signal, and the model performs better with the low-frequency oscillation from the MVMD algorithm on the second stage classification than that of other decomposition methods.
Collapse
|
8
|
Ma S, Chen C, Zhao J, Han D, Sheng X, Farina D, Zhu X. Analytical Modelling of Surface EMG Signals Generated by Curvilinear Fibers with Approximate Conductivity Tensor. IEEE Trans Biomed Eng 2021; 69:1052-1062. [PMID: 34529557 DOI: 10.1109/tbme.2021.3112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Mathematical modelling of surface electromyographic (EMG) signals has been proven a valuable tool to interpret experimental data and to validate signal processing techniques. Most analytical EMG models only consider muscle fibers with specific and fixed arrangements. However, the fiber orientation and curvature may change along the fiber paths and may differ from fiber to fiber. Here we propose a subject-specific EMG model that simulates the fiber trajectories in muscles of the upper arm and analytically derives the action potentials assuming an approximate conductivity tensor. METHODS Magnetic Resonance (MR) images were acquired to identify and generate muscle fiber paths and to determine the muscle locations in a cylindrical volume conductor. While the propagation of the action potentials followed the identified curvilinear fiber paths, the conductivity tensor was not adapted to the fiber direction but approximated along the longitudinal axis of the cylindrical volume conductor. Single fiber action potentials (SFAPs) were computed by simulating the generation, propagation, and extinction of membrane current sources. To validate the assumption of the approximate conductivity tensor, two numerical models were implemented for comparison with the analytical solution. The first numerical model reproduced the analytical model and therefore included an approximation for the conductivity tensor. The second numerical model included the exact conductivity tensor derived from the fiber curvatures. RESULTS The motor unit action potentials generated by the proposed analytical model and the two numerical models were highly similar (cross-correlation >0.98, normalized root mean square error, nRMSE 0.04, relative error in the median frequency of the simulated waveforms of approximately 3%). The proposed analytical model was also evaluated by comparing simulated and experimentally recorded compound muscle action potentials (CMAPs). The CMAPs simulated with the proposed model better matched the experimental data (cross-correlation >0.90 and nRMSE <0.25 for the majority of the channels) than a model with straight fibers. Finally, the proposed model was representatively used to test the accuracy of an EMG decomposition algorithm, providing a realistic benchmark. CONCLUSIONS AND SIGNIFICANCE The proposed analytical model generates action potentials that reflect the spatial distributions of muscle fibers with curvilinear paths. The simulated signals are more realistic than signals generated by analytical models with straight fibers and can therefore be applied for testing EMG processing algorithms with a trade-off between simulation accuracy and computational speed.
Collapse
|
9
|
Processing of EMG Signals with High Impact of Power Line and Cardiac Interferences. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work deals with electromyography (EMG) signal processing for the diagnosis and therapy of different muscles. Because the correct muscle activity measurement of strongly noised EMG signals is the major hurdle in medical applications, a raw measured EMG signal should be cleaned of different factors like power network interference and ECG heartbeat. Unfortunately, there are no completed studies showing full multistage signal processing of EMG recordings. In this article, the authors propose an original algorithm to perform muscle activity measurements based on raw measurements. The effectiveness of the proposed algorithm for EMG signal measurement was validated by a portable EMG system developed as a part of the EU research project and EMG raw measurement sets. Examples of removing the parasitic interferences are presented for each stage of signal processing. Finally, it is shown that the proposed processing of EMG signals enables cleaning of the EMG signal with minimal loss of the diagnostic content.
Collapse
|