1
|
Jimenez R, Yurk D, Dell S, Rutledge AC, Fu MK, Dempsey WP, Abu-Mostafa Y, Rajagopal A, Brinley Rajagopal A. Resonance sonomanometry for noninvasive, continuous monitoring of blood pressure. PNAS NEXUS 2024; 3:pgae252. [PMID: 39081785 PMCID: PMC11287871 DOI: 10.1093/pnasnexus/pgae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Existing methods for continuous, noninvasive blood pressure (BP) monitoring suffer from poor accuracy, uncomfortable form factors, or a need for frequent calibration, limiting their adoption. We introduce a new framework for continuous BP measurement that is noninvasive and calibration-free called resonance sonomanometry. The method uses ultrasound imaging to measure both the arterial dimensions and artery wall resonances that are induced by acoustic stimulation, which offers a direct measure of BP by a fully determined physical model. The approach and model are validated in vitro using arterial mock-ups and then in multiple arteries in human subjects. This approach offers the promise of robust continuous BP measurements, providing significant benefits for early diagnosis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Raymond Jimenez
- Esperto Medical, Inc., 300 Spectrum Center Drive, Suite 400, Irvine, CA 92618, USA
| | - Dominic Yurk
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| | - Steven Dell
- Esperto Medical, Inc., 300 Spectrum Center Drive, Suite 400, Irvine, CA 92618, USA
| | - Austin C Rutledge
- Esperto Medical, Inc., 300 Spectrum Center Drive, Suite 400, Irvine, CA 92618, USA
| | - Matt K Fu
- Esperto Medical, Inc., 300 Spectrum Center Drive, Suite 400, Irvine, CA 92618, USA
| | - William P Dempsey
- Esperto Medical, Inc., 300 Spectrum Center Drive, Suite 400, Irvine, CA 92618, USA
| | - Yaser Abu-Mostafa
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| | - Aditya Rajagopal
- Esperto Medical, Inc., 300 Spectrum Center Drive, Suite 400, Irvine, CA 92618, USA
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA
| | - Alaina Brinley Rajagopal
- Esperto Medical, Inc., 300 Spectrum Center Drive, Suite 400, Irvine, CA 92618, USA
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
2
|
Wang L, Tian S, Zhu R. A new method of continuous blood pressure monitoring using multichannel sensing signals on the wrist. MICROSYSTEMS & NANOENGINEERING 2023; 9:117. [PMID: 37744263 PMCID: PMC10511443 DOI: 10.1038/s41378-023-00590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023]
Abstract
Hypertension is a worldwide health problem and a primary risk factor for cardiovascular disease. Continuous monitoring of blood pressure has important clinical value for the early diagnosis and prevention of cardiovascular disease. However, existing technologies for wearable continuous blood pressure monitoring are usually inaccurate, rely on subject-specific calibration and have poor generalization across individuals, which limit their practical applications. Here, we report a new blood pressure measurement method and develop an associated wearable device to implement continuous blood pressure monitoring for new subjects. The wearable device detects cardiac output and pulse waveform features through dual photoplethysmography (PPG) sensors worn on the palmar and dorsal sides of the wrist, incorporating custom-made interface sensors to detect the wearing contact pressure and skin temperature. The detected multichannel signals are fused using a machine-learning algorithm to estimate continuous blood pressure in real time. This dual PPG sensing method effectively eliminates the personal differences in PPG signals caused by different people and different wearing conditions. The proposed wearable device enables continuous blood pressure monitoring with good generalizability across individuals and demonstrates promising potential in personal health care applications.
Collapse
Affiliation(s)
- Liangqi Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, 100084 Beijing, China
| | - Shuo Tian
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, 100084 Beijing, China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
3
|
Abstract
Cuffless blood pressure (BP) measurement has become a popular field due to clinical need and technological opportunity. However, no method has been broadly accepted hitherto. The objective of this review is to accelerate progress in the development and application of cuffless BP measurement methods. We begin by describing the principles of conventional BP measurement, outstanding hypertension/hypotension problems that could be addressed with cuffless methods, and recent technological advances, including smartphone proliferation and wearable sensing, that are driving the field. We then present all major cuffless methods under investigation, including their current evidence. Our presentation includes calibrated methods (i.e., pulse transit time, pulse wave analysis, and facial video processing) and uncalibrated methods (i.e., cuffless oscillometry, ultrasound, and volume control). The calibrated methods can offer convenience advantages, whereas the uncalibrated methods do not require periodic cuff device usage or demographic inputs. We conclude by summarizing the field and highlighting potentially useful future research directions. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ramakrishna Mukkamala
- Department of Bioengineering and Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - George S Stergiou
- Hypertension Center STRIDE-7, School of Medicine, Third Department of Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece; ,
| | - Alberto P Avolio
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia;
| |
Collapse
|
4
|
Al-harosh M, Yangirov M, Kolesnikov D, Shchukin S. Bio-Impedance Sensor for Real-Time Artery Diameter Waveform Assessment. SENSORS 2021; 21:s21248438. [PMID: 34960542 PMCID: PMC8709432 DOI: 10.3390/s21248438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/21/2023]
Abstract
The real-time artery diameter waveform assessment during cardio cycle can allow the measurement of beat-to-beat pressure change and the long-term blood pressure monitoring. The aim of this study is to develop a self-calibrated bio-impedance-based sensor, which can provide regular measurement of the blood-pressure-dependence time variable parameters such as the artery diameter waveform and the elasticity. This paper proposes an algorithm based on analytical models which need prior geometrical and physiological patient parameters for more appropriate electrode system selection and hence location to provide accurate blood pressure measurement. As a result of this study, the red cell orientation effect contribution was estimated and removed from the bio-impedance signal obtained from the artery to keep monitoring the diameter waveform correspondence to the change of blood pressure.
Collapse
|