1
|
Bhat SG, Shin AY, Kaufman KR. Upper extremity asymmetry due to nerve injuries or central neurologic conditions: a scoping review. J Neuroeng Rehabil 2023; 20:151. [PMID: 37940959 PMCID: PMC10634143 DOI: 10.1186/s12984-023-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Peripheral nerve injuries and central neurologic conditions can result in extensive disabilities. In cases with unilateral impairment, assessing the asymmetry between the upper extremity has been used to assess outcomes of treatment and severity of injury. A wide variety of validated and novel tests and sensors have been utilized to determine the upper extremity asymmetry. The purpose of this article is to review the literature and define the current state of the art for describing upper extremity asymmetry in patients with peripheral nerve injuries or central neurologic conditions. METHOD An electronic literature search of PubMed, Scopus, Web of Science, OVID was performed for publications between 2000 to 2022. Eligibility criteria were subjects with neurological conditions/injuries who were analyzed for dissimilarities in use between the upper extremities. Data related to study population, target condition/injury, types of tests performed, sensors used, real-world data collection, outcome measures of interest, and results of the study were extracted. Sackett's Level of Evidence was used to judge the quality of the articles. RESULTS Of the 7281 unique articles, 112 articles met the inclusion criteria for the review. Eight target conditions/injuries were identified (Brachial Plexus Injury, Cerebral Palsy, Multiple Sclerosis, Parkinson's Disease, Peripheral Nerve Injury, Spinal Cord Injury, Schizophrenia, and stroke). The tests performed were classified into thirteen categories based on the nature of the test and data collected. The general results related to upper extremity asymmetry were listed for all the reviewed articles. Stroke was the most studied condition, followed by cerebral palsy, with kinematics and strength measurement tests being the most frequently used tests. Studies with a level of evidence level II and III increased between 2000 and 2021. The use of real-world evidence-based data, and objective data collection tests also increased in the same period. CONCLUSION Adequately powered randomized controlled trials should be used to study upper extremity asymmetry. Neurological conditions other than stroke should be studied further. Upper extremity asymmetry should be measured using objective outcome measures like motion tracking and activity monitoring in the patient's daily living environment.
Collapse
Affiliation(s)
- Sandesh G Bhat
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kenton R Kaufman
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Motion Analysis Laboratory, Mayo Clinic, DAHLC 4-214A, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Feng W, Ma M, Gao H, Yuan W, Li R, Guo H, Gu C, Sun Z, Zhang Y, Zheng L. Association between handgrip strength asymmetry and cognitive function across ethnicity in rural China: a cross-sectional study. Front Aging Neurosci 2023; 15:1191197. [PMID: 37273648 PMCID: PMC10235480 DOI: 10.3389/fnagi.2023.1191197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Background Recently, the association between handgrip strength (HGS) asymmetry and cognition has been revealed, but evidences are still scarce. Particularly, the association between asymmetric HGS and cognitive performance in various cognitive domains is unclear and whether this association is stable across ethnic groups is unknown. Method The population was from a longitudinal study in rural areas of Fuxin, Liaoning, China. The Chinese version of Montreal Cognitive Assessment-Basic (MOCA-BC) was used to evaluate the cognitive function. The HGS ratio was calculated as maximal non-dominant HGS divided by maximal dominant HGS. HGS ratio <0.9 or >1.1 was classified as asymmetric dominant/non-dominant HGS, respectively. Generalized linear models were used to analyze the relationship between asymmetric HGS and cognitive function adjusted for HGS, handedness, wave, age, sex, education, ethnicity, smoking, drinking, physical labor level, BMI, hypertension, diabetes and dyslipidemia. Result A total of 2,969 participants ≥50 years were included in this study. Adjusted for HGS and other confunding variables, there was an inverted U-shaped association between HGS ratio and MoCA-BC scores (P non-linear = 0.004). The association between HGS ratio and MoCA-BC scores was inconsistent among ethnic groups (P interaction = 0.048). In Han, only asymmetric non-dominant HGS was associated with lower cognitive scores [β = -0.67, 95% confidence interval (CI): -1.26 ∼-0.08, P = 0.027]; in Mongolians, asymmetric dominant HGS(β = -0.60, 95% CI: -1.35 ∼ 0.15, P = 0.115) and asymmetric non-dominant HGS (β = -0.56, 95% CI: -1.42 ∼ 0.31, P = 0.206) were all associated with lower cognitive scores, although no statistical significance was found. Asymmetric non-dominant HGS and lower HGS, but not asymmetric dominant HGS were all independently associated with impairment of Delayed Recall (OR = 1.35, 95% CI: 1.05 ∼ 1.74; OR per 5 kg decrease = 1.10, 95% CI: 1.01 ∼ 1.21) and Fluency (OR = 1.43, 95% CI: 1.15 ∼ 1.78; OR per 5 kg decrease = 1.10, 95% CI: 1.02 ∼ 1.19). Both asymmetric dominant HGS (OR = 1.34, 95% CI: 1.07 ∼ 1.67) and lower HGS (OR per 5 kg decrease = 1.21, 95% CI: 1.10 ∼ 1.32) were associated with impairment of visuoperception. Conclusion HGS and HGS asymmetry were all independently related to lower global cognitive performance. The association between HGS asymmetry and cognitive function varies among ethnic groups.
Collapse
Affiliation(s)
- Wenjing Feng
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Mingfeng Ma
- Department of Cardiology, Fenyang Hospital of Shanxi Province, Fenyang, Shanxi, China
| | - Hanshu Gao
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wei Yuan
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Ruixue Li
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Hui Guo
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Cuiying Gu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqiang Zheng
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhang M, Sun C, Liu Y, Wu X. A Robotic System to Deliver Multiple Physically Bimanual Tasks via Varying Force Fields. IEEE Trans Neural Syst Rehabil Eng 2022; 30:688-698. [PMID: 35271445 DOI: 10.1109/tnsre.2022.3158339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Individuals with physical limb disabilities are often restricted to perform activities of daily life (ADLs). While efficacy of bilateral training has been demonstrated in improving physical coordination of human limbs, few robots have been developed in simulating people's ADLs integrated with task-specific force field control. This study sought to develop a bilateral robot for better task rendering of general ADLs (gADLs), where gADL-consistent workspace is achieved by setting linear motors in series, and haptic rendering of multiple bimanual tasks (coupled, uncoupled and semi-coupled) is enabled by regulating force fields between robotic handles. Experiments were conducted with human users, and our results present a viable method of a single robotic system in simulating multiple physically bimanual tasks. In future, the proposed robotic system is expected to be serving as a coordination training device, and its clinical efficacy will be also investigated.
Collapse
|
4
|
Jiang YC, Ma R, Qi S, Ge S, Sun Z, Li Y, Song J, Zhang M. Characterization of Bimanual Cyclical Tasks from Single-trial EEG-fNIRS Measurements. IEEE Trans Neural Syst Rehabil Eng 2022; 30:146-156. [PMID: 35041608 DOI: 10.1109/tnsre.2022.3144216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Robot-assisted bimanual training is promising to improve motor function and cortical reorganization for hemiparetic stroke patients. Closing the rehabilitation training loop with neurofeedback can help refine training protocols in time for better engagements and outcomes. However, due to the low signal-to- noise ratio (SNR) and non-stationary properties of neural signals, reliable characterization of bimanual training-induced neural activities from single-trial measurement is challenging. In this study, ten human participants were recruited conducting robot-assisted bimanual cyclical tasks (in-phase, 90° out-of-phase, and anti-phase) when concurrent electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) were recorded. A unified EEG-fNIRS bimodal signal processing framework was proposed to characterize neural activities induced by three types of bimanual cyclical tasks. In this framework, novel artifact removal methods were used to improve the SNR and the task-related component analysis (TRCA) was introduced to increase the reproducibility of EEG-fNIRS bimodal features. The optimized features were transformed into low-dimensional indicators to reliably characterize bimanual training-induced neural activation. The SVM classification results of three bimanual cyclical tasks revealed a good discrimination ability of EEG-fNIRS bimodal indicators (90.1%), which was higher than that using EEG (74.8%) or fNIRS (82.2%) alone, supporting the proposed method as a feasible technique to characterize neural activities during robot-assisted bimanual training.
Collapse
|