1
|
Liu Y, Yu J, Mou H. BP-diff: a conditional diffusion model for cuffless continuous BP waveform estimation using U-Net. Physiol Meas 2024; 45:105006. [PMID: 39321963 DOI: 10.1088/1361-6579/ad7fcc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Objective.Continuous monitoring of blood pressure (BP) is crucial for daily healthcare. Although invasive methods provide accurate continuous BP measurements, they are not suitable for routine use. Photoplethysmography (PPG), a non-invasive technique that detects changes in blood volume within the microcirculation using light, shows promise for BP measurement. The primary goal of this study is to develop a novel cuffless method based on PPG for accurately estimating continuous BP.Approach.We introduce BP-Diff, an end-to-end method for cuffless continuous BP waveform estimation utilizing a conditional diffusion probability model combined with a U-Net architecture. This approach takes advantage of the stochastic properties of diffusion models and the strong feature representation capabilities of U-Net. It integrates the continuous BP waveform as the initial status and uses the PPG signal and its derivatives as conditions to guide the training and sampling process.Main results.BP-Diff was evaluated using both uncalibrated and calibrated schemes. The results indicate that, when uncalibrated, BP-Diff can accurately track BP dynamics, including peak and valley positions, as well as timing. After calibration, BP-Diff achieved highly accurate BP estimations. The mean absolute error of the estimated BP waveforms, along with the systolic BP, diastolic BP, and mean arterial pressure from the calibrated BP-Diff model, were 2.99 mmHg, 2.6 mmHg, 1.4 mmHg, and 1.44 mmHg, respectively. Consistency tests, including Bland-Altman analysis and Pearson correlation, confirmed its high reliability compared to reference BP. BP-Diff meets the American Association for Medical Instrumentation standards and has achieved a Grade A from the British Hypertension Society.Significance.This study utilizes PPG signals to develop a novel cuffless continuous BP measurement method, demonstrating superiority over existing approaches. The method is suitable for integration into wearable devices, providing a practical solution for continuous BP monitoring in everyday healthcare.
Collapse
Affiliation(s)
- Yinsong Liu
- Department of School of Electronic Engineering, Beijing University of Posts and Telecommunication, Beijing 100876, People's Republic of China
| | - Junsheng Yu
- Department of School of Electronic Engineering, Beijing University of Posts and Telecommunication, Beijing 100876, People's Republic of China
- School of Physics and Electronic Information, Anhui Normal University, Wuhu 241003, People's Republic of China
- School of Intelligence and Digital Engineering, Luoyang Vocational College of Science and Technology, Luoyang 471000, People's Republic of China
| | - Hanlin Mou
- Chinese Academy of Sciences Aerospace Information Research Institute, Beijing 100094, People's Republic of China
| |
Collapse
|
2
|
Cen Y, Luo J, Wang H, Chen L, Zhu X, Guo S, Luo J. OVAR-BPnet: A General Pulse Wave Deep Learning Approach for Cuffless Blood Pressure Measurement. IEEE J Biomed Health Inform 2024; 28:5829-5841. [PMID: 38963748 DOI: 10.1109/jbhi.2024.3423461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Pulse wave analysis, a non-invasive and cuff-less approach, holds promise for blood pressure (BP) measurement in precision medicine. In recent years, pulse wave learning for BP estimation has undergone extensive scrutiny. However, prevailing methods still encounter challenges in grasping comprehensive features from pulse waves and generalizing these insights for precise BP estimation. In this study, we propose a general pulse wave deep learning (PWDL) approach for BP estimation, introduc-ing the OVAR-BPnet model to powerfully capture intricate pulse wave features and showcasing its effectiveness on multiple types of pulse waves. The approach involves constructing population pulse waves and employing a model comprising an omni-scale convolution subnet, a Vision Transformer subnet, and a multilayer perceptron subnet. This design enables the learning of both single-period and multi-period waveform features from multiple subjects. Additionally, the approach employs a data augmentation strategy to enhance the morphological features of pulse waves and devise a label sequence regularization strategy to strengthen the intrinsic relationship of the subnets' output. Notably, this is the first study to validate the performance of the deep learning approach of BP estimation on three types of pulse waves: photoplethysmography, forehead imaging photoplethysmography, and radial artery pulse pressure waveform. Experiments show that the OVAR-BPnet model has achieved advanced levels in both evaluation indicators and international evaluation criteria, demonstrating its excellent competitiveness and generalizability. The PWDL approach has the potential for widespread application in convenient and continuous BP monitoring systems.
Collapse
|
3
|
Qiu Y, Ma X, Li X, Fan S, Deng Z, Huang X. Non-Contact Blood Pressure Estimation From Radar Signals by a Stacked Deformable Convolution Network. IEEE J Biomed Health Inform 2024; 28:4553-4564. [PMID: 38743528 DOI: 10.1109/jbhi.2024.3400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This study introduces a contactless blood pressure monitoring approach that combines conventional radar signal processing with novel deep learning architectures. During the preprocessing phase, datasets suitable for synchronization are created by integrating Kalman filtering, multiscale bandpass filters, and a periodic extraction method in the time domain. These data comprise data on chest micro variations, encapsulating a complex array of physiological and biomedical information reflective of cardiac micromotions. The Radar-based Stacked Deformable convolution Network (RSD-Net) integrates channel and spatial self attention mechanisms within a deformable convolutional framework to enhance feature extraction from radar signals. The network architecture systematically employs deformable convolutions for initial deep feature extraction from individual signals. Subsequently, continuous blood pressure estimation is conducted using self attention mechanisms on feature map from single source coupled with multi-feature map channel attention. The performance of model is corroborated via the open-source dataset procured using a non-invasive 24 GHz six-port continuous wave radar system. The dataset, encompassing readings from 30 healthy individuals subjected to diverse conditions including rest, the Valsalva maneuver, apnea, and tilt-table examinations. It serves to substantiate the validity and resilience of the proposed method in the non-contact assessment of continuous blood pressure. Evaluation metrics reveal Pearson correlation coefficients of 0.838 for systolic and 0.797 for diastolic blood pressure predictions. The Mean Error (ME) and Standard Deviation (SD) for systolic and diastolic blood pressure measurements are -0.32 ±6.14 mmHg and -0.20 ±5.50 mmHg, respectively. The ablation study assesses the contribution of different structural components of the RSD-Net, validating their significance in the overall of model performance.
Collapse
|
4
|
Salsabilian S, Lee C, Margolis D, Najafizadeh L. An LSTM-based adversarial variational autoencoder framework for self-supervised neural decoding of behavioral choices. J Neural Eng 2024; 21:036052. [PMID: 38621379 DOI: 10.1088/1741-2552/ad3eb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Objective.This paper presents data-driven solutions to address two challenges in the problem of linking neural data and behavior: (1) unsupervised analysis of behavioral data and automatic label generation from behavioral observations, and (2) extraction of subject-invariant features for the development of generalized neural decoding models.Approach. For behavioral analysis and label generation, an unsupervised method, which employs an autoencoder to transform behavioral data into a cluster-friendly feature space is presented. The model iteratively refines the assigned clusters with soft clustering assignment loss, and gradually improves the learned feature representations. To address subject variability in decoding neural activity, adversarial learning in combination with a long short-term memory-based adversarial variational autoencoder (LSTM-AVAE) model is employed. By using an adversary network to constrain the latent representations, the model captures shared information among subjects' neural activity, making it proper for cross-subject transfer learning.Main results. The proposed approach is evaluated using cortical recordings of Thy1-GCaMP6s transgenic mice obtained via widefield calcium imaging during a motivational licking behavioral experiment. The results show that the proposed model achieves an accuracy of 89.7% in cross-subject neural decoding, outperforming other well-known autoencoder-based feature learning models. These findings suggest that incorporating an adversary network eliminates subject dependency in representations, leading to improved cross-subject transfer learning performance, while also demonstrating the effectiveness of LSTM-based models in capturing the temporal dependencies within neural data.Significance. Results demonstrate the feasibility of the proposed framework in unsupervised clustering and label generation of behavioral data, as well as achieving high accuracy in cross-subject neural decoding, indicating its potentials for relating neural activity to behavior.
Collapse
Affiliation(s)
- Shiva Salsabilian
- Integrated Systems and NeuroImaging Laboratory, Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Christian Lee
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States of America
| | - David Margolis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States of America
| | - Laleh Najafizadeh
- Integrated Systems and NeuroImaging Laboratory, Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, United States of America
| |
Collapse
|
5
|
Liu ZD, Li Y, Zhang YT, Zeng J, Chen ZX, Liu JK, Miao F. HGCTNet: Handcrafted Feature-Guided CNN and Transformer Network for Wearable Cuffless Blood Pressure Measurement. IEEE J Biomed Health Inform 2024; 28:3882-3894. [PMID: 38687656 DOI: 10.1109/jbhi.2024.3395445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Biosignals collected by wearable devices, such as electrocardiogram and photoplethysmogram, exhibit redundancy and global temporal dependencies, posing a challenge in extracting discriminative features for blood pressure (BP) estimation. To address this challenge, we propose HGCTNet, a handcrafted feature-guided CNN and transformer network for cuffless BP measurement based on wearable devices. By leveraging convolutional operations and self-attention mechanisms, we design a CNN-Transformer hybrid architecture to learn features from biosignals that capture both local information and global temporal dependencies. Then, we introduce a handcrafted feature-guided attention module that utilizes handcrafted features extracted from biosignals as query vectors to eliminate redundant information within the learned features. Finally, we design a feature fusion module that integrates the learned features, handcrafted features, and demographics to enhance model performance. We validate our approach using two large wearable BP datasets: the CAS-BP dataset and the Aurora-BP dataset. Experimental results demonstrate that HGCTNet achieves an estimation error of 0.9 ± 6.5 mmHg for diastolic BP (DBP) and 0.7 ± 8.3 mmHg for systolic BP (SBP) on the CAS-BP dataset. On the Aurora-BP dataset, the corresponding errors are -0.4 ± 7.0 mmHg for DBP and -0.4 ± 8.6 mmHg for SBP. Compared to the current state-of-the-art approaches, HGCTNet reduces the mean absolute error of SBP estimation by 10.68% on the CAS-BP dataset and 9.84% on the Aurora-BP dataset. These results highlight the potential of HGCTNet in improving the performance of wearable cuffless BP measurements.
Collapse
|
6
|
Shokouhmand A, Jiang X, Ayazi F, Ebadi N. MEMS Fingertip Strain Plethysmography for Cuffless Estimation of Blood Pressure. IEEE J Biomed Health Inform 2024; 28:2699-2712. [PMID: 38442050 DOI: 10.1109/jbhi.2024.3372968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
OBJECTIVE To develop a cuffless method for estimating blood pressure (BP) from fingertip strain plethysmography (SPG) recordings. METHODS A custom-built micro-electromechanical systems (MEMS) strain sensor is employed to record heartbeat-induced vibrations at the fingertip. An XGboost regressor is then trained to relate SPG recordings to beat-to-beat systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) values. For this purpose, each SPG segment in this setup is represented by a feature vector consisting of cardiac time interval, amplitude features, statistical properties, and demographic information of the subjects. In addition, a novel concept, coined geometric features, are introduced and incorporated into the feature space to further encode the dynamics in SPG recordings. The performance of the regressor is assessed on 32 healthy subjects through 5-fold cross-validation (5-CV) and leave-subject-out cross validation (LSOCV). RESULTS Mean absolute errors (MAEs) of 3.88 mmHg and 5.45 mmHg were achieved for DBP and SBP estimations, respectively, in the 5-CV setting. LSOCV yielded MAEs of 8.16 mmHg for DBP and 16.81 mmHg for SBP. Through feature importance analysis, 3 geometric and 26 integral-related features introduced in this work were identified as primary contributors to BP estimation. The method exhibited robustness against variations in blood pressure level (normal to critical) and body mass index (underweight to obese), with MAE ranges of [1.28, 4.28] mmHg and [2.64, 7.52] mmHg, respectively. CONCLUSION The findings suggest high potential for SPG-based BP estimation at the fingertip. SIGNIFICANCE This study presents a fundamental step towards the augmentation of optical sensors that are susceptible to dark skin tones.
Collapse
|
7
|
Cui M, Dong X, Zhuang Y, Li S, Yin S, Chen Z, Liang Y. ACNN-BiLSTM: A Deep Learning Approach for Continuous Noninvasive Blood Pressure Measurement Using Multi-Wavelength PPG Fusion. Bioengineering (Basel) 2024; 11:306. [PMID: 38671728 PMCID: PMC11047674 DOI: 10.3390/bioengineering11040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
As an essential physiological indicator within the human body, noninvasive continuous blood pressure (BP) measurement is critical in the prevention and treatment of cardiovascular disease. However, traditional methods of blood pressure prediction using a single-wavelength Photoplethysmographic (PPG) have bottlenecks in further improving BP prediction accuracy, which limits their development in clinical application and dissemination. To this end, this study proposed a method to fuse a four-wavelength PPG and a BP prediction model based on the attention mechanism of a convolutional neural network and bidirectional long- and short-term memory (ACNN-BiLSTM). The effectiveness of a multi-wavelength PPG fusion method for blood pressure prediction was evaluated by processing PPG signals from 162 volunteers. The study compared the performance of the PPG signals with different individual wavelengths and using a multi-wavelength PPG fusion method in blood pressure prediction, assessed using mean absolute error (MAE), root mean squared error (RMSE) and AAMI-related criteria. The experimental results showed that the ACNN-BiLSTM model achieved a better MAE ± RMSE for a systolic BP and diastolic BP of 1.67 ± 5.28 and 1.15 ± 2.53 mmHg, respectively, when using the multi-wavelength PPG fusion method. As a result, the ACNN-BiLSTM blood pressure model based on multi-wavelength PPG fusion could be considered a promising method for noninvasive continuous BP measurement.
Collapse
Affiliation(s)
- Mou Cui
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (M.C.); (X.D.)
| | - Xuhao Dong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (M.C.); (X.D.)
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Zhuang
- National Supercomputing Center in Xi’an, Xi’an 710100, China;
| | - Shiyong Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (M.C.); (X.D.)
| | - Shimin Yin
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (M.C.); (X.D.)
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guilin 541004, China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (M.C.); (X.D.)
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guilin 541004, China
| | - Yongbo Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (M.C.); (X.D.)
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guilin 541004, China
| |
Collapse
|
8
|
Liu Y, Yu J, Mou H. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach. Physiol Meas 2023; 44:125004. [PMID: 38099538 DOI: 10.1088/1361-6579/ad0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023]
Abstract
Objective.Photoplethysmography (PPG) is a promising wearable technology that detects volumetric changes in microcirculation using a light source and a sensor on the skin's surface. PPG has been shown to be useful for non-invasive blood pressure (BP) measurement. Deep learning-based BP measurements are now gaining popularity. However, almost all methods focus on 1D PPG. We aimed to design an end-to-end approach for estimating BP using image encodings from a 2D perspective.Approach.In this paper, we present a BP estimation approach based on an image encoding and fusion (BP-IEF) technique. We convert the PPG into five image encodings and use them as input. The proposed BP-IEF consists of two parts: an encoder and a decoder. In addition, three kinds of well-known neural networks are taken as the fundamental architecture of the encoder. The decoder is a hybrid architecture that consists of convolutional and fully connected layers, which are used to fuse features from the encoder.Main results.The performance of the proposed BP-IEF is evaluated on the UCI database in both non-mixed and mixed manners. On the non-mixed dataset, the root mean square error and mean absolute error for systolic BP (SBP) are 13.031 mmHg and 9.187 mmHg respectively, while for diastolic BP (DBP) they are 5.049 mmHg and 3.810 mmHg. On the mixed dataset, the corresponding values for SBP are 4.623 mmHg and 3.058 mmHg, while for DBP the values are 2.350 mmHg and 1.608 mmHg. In addition, both SBP and DBP estimation on the mixed dataset achieved grade A compared to the British Hypertension Society standard. The DBP estimation on the non-mixed dataset also achieved grade A.Significance.The results indicate that the proposed approach has the potential to improve on the current mobile healthcare for cuffless BP measurement.
Collapse
Affiliation(s)
- Yinsong Liu
- Department of School of Electronic Engineering, Beijing University of Posts and Telecommunication, Beijing 100876, People's Republic of China
| | - Junsheng Yu
- Department of School of Electronic Engineering, Beijing University of Posts and Telecommunication, Beijing 100876, People's Republic of China
- School of Physics and Electronic Information, Anhui Normal University, Wuhu 241003, People's Republic of China
- School of Intelligence and Digital Engineering, Luoyang Vocational College of Science and Technology, Luoyang 471000, People's Republic of China
| | - Hanlin Mou
- Chinese Academy of Sciences Aerospace Information Research Institute, Beijing 100094, People's Republic of China
| |
Collapse
|
9
|
Pankaj, Kumar A, Komaragiri R, Kumar M. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework. Phys Eng Sci Med 2023; 46:1589-1605. [PMID: 37747644 DOI: 10.1007/s13246-023-01322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
The markers that help to predict th function of a cardiovascular system are hemodynamic parameters like blood pressure (BP), stroke volume, heart rate, and cardiac output. Continuous analysis of hemodynamic parameters such as BP can detect abnormalities earlier, preventing cardiovascular diseases (CVDs). However, sometimes due to motion artifacts, it becomes difficult to monitor the BP accurately and classify it. This work presents an optimized deep learning model having the capability to estimate the systolic blood pressure (SBP) and diastolic blood pressure (DBP) and classify the BP stages simultaneously from the same network using only a single channel photoplethysmography (PPG) signal. The proposed model is designed by exploiting the deep learning framework of a convolutional neural network (CNN), exhibiting the inherent ability to extract features automatically. Moreover, the proposed framework utilizes the superlet transform method to transform a 1-D PPG signal into a 2-D super-resolution time-frequency (TF) spectrogram. A superlet transform separates the peaks related to true PPG signal components and motion artifacts components. Thus, the superlet provides a robust realtime approach to accurately estimating and classifying BP using a single PPG sensor signal and does not require additional ECG and PPG sensor signals for reference. Using a super-resolution spectrogram and CNN model makes the method profitable in motion artifact removal, feature selection, and extraction. Hence the proposed framework becomes less complex for deployment on wearable devices having limited battery resources. The performance of the proposed framework is demonstrated on the publicly available larger dataset MIMIC-III. This work obtained a mean absolute error (MAE) of 2.71 mmHg and 2.42 mmHg for SBP and DBP, respectively. The classification accuracy for the SBP prediction is about 96.79%, whereas it is 98.94% for DBP. From a motion artifact-affected PPG signal, SBP and DBP are estimated. Then the estimated BP is classified into three categories: normotension, prehypertension, and hypertension, and is compared with the state of art methods to show the effectiveness of the proposed optimized framework.
Collapse
Affiliation(s)
- Pankaj
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, India
| | - Ashish Kumar
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, India
- School of Computer science engineering and technology, Bennett University, Greater Noida, India
| | - Rama Komaragiri
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, India
| | - Manjeet Kumar
- Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India.
| |
Collapse
|
10
|
Sultan MA, Saadeh W. Continuous Patient-Independent Estimation of Respiratory Rate and Blood Pressure Using Robust Spectro-Temporal Features Derived From Photoplethysmogram Only. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:637-649. [PMID: 39184965 PMCID: PMC11342923 DOI: 10.1109/ojemb.2023.3329728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 08/27/2024] Open
Abstract
Objective: A patient-independent approach for continuous estimation of vital signs using robust spectro-temporal features derived from only photoplethysmogram (PPG) signal. Methods: In the pre-processing stage, we remove baseline shifts and artifacts of the PPG signal using Incremental Merge Segmentation with adaptive thresholding. From the cleaned PPG, we extract multiple parameters independent of individual patient PPG morphology for both Respiration Rate (RR) and Blood Pressure (BP). In addition, we derived a set of novel spectral and statistical features strongly correlated to BP. We proposed robust correlation-based feature selection methods for accurate RR estimates. For fewer computations and accurate measurements of BP, the most significant features are selected using correlation and mutual information measures in the feature engineering part. Finally, RR and BP are estimated using breath counting and a neural network regression model, respectively. Results: The proposed approach outperforms the current state-of-the-art in both RR and BP. The RR algorithm results in mean absolute errors (median, 25th-75th percentiles) of 0.4 (0.1-0.7) for CapnoBase dataset and 0.5(0.3-2.8) for BIDMC dataset without discarding any data window. Similarly, BP approach has been validated on a large dataset derived from MIMIC-II ([Formula: see text]1700 records) which has errors (mean absolute, standard deviation) of 5.0(6.3) and 3.0(4.0) for systolic and diastolic BP, respectively. The results meet the American Association for the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) Class A criteria. Conclusion: By using robust features and feature selection methods, we alleviated patient dependency to have reliable estimates of vitals.
Collapse
Affiliation(s)
- Muhammad Ahmad Sultan
- Electrical Engineering DepartmentLahore University of Management Sciences (LUMS)Lahore54792Pakistan
| | - Wala Saadeh
- The Engineering and Design DepartmentWestern Washington University (WWU)BellinghamWA98225USA
| |
Collapse
|
11
|
Liu ZD, Li Y, Zhang YT, Zeng J, Chen ZX, Cui ZW, Liu JK, Miao F. Cuffless Blood Pressure Measurement Using Smartwatches: A Large-Scale Validation Study. IEEE J Biomed Health Inform 2023; 27:4216-4227. [PMID: 37204948 DOI: 10.1109/jbhi.2023.3278168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This study aimed to evaluate the performance of cuffless blood pressure (BP) measurement techniques in a large and diverse cohort of participants. We enrolled 3077 participants (aged 18-75, 65.16% women, 35.91% hypertensive participants) and conducted followed-up for approximately 1 month. Electrocardiogram, pulse pressure wave, and multiwavelength photoplethysmogram signals were simultaneously recorded using smartwatches; dual-observer auscultation systolic BP (SBP) and diastolic BP (DBP) reference measurements were also obtained. Pulse transit time, traditional machine learning (TML), and deep learning (DL) models were evaluated with calibration and calibration-free strategy. TML models were developed using ridge regression, support vector machine, adaptive boosting, and random forest; while DL models using convolutional and recurrent neural networks. The best-performing calibration-based model yielded estimation errors of 1.33 ± 6.43 mmHg for DBP and 2.31 ± 9.57 mmHg for SBP in the overall population, with reduced SBP estimation errors in normotensive (1.97 ± 7.85 mmHg) and young (0.24 ± 6.61 mmHg) subpopulations. The best-performing calibration-free model had estimation errors of -0.29 ± 8.78 mmHg for DBP and -0.71 ± 13.04 mmHg for SBP. We conclude that smartwatches are effective for measuring DBP for all participants and SBP for normotensive and younger participants with calibration; performance degrades significantly for heterogeneous populations including older and hypertensive participants. The availability of cuffless BP measurement without calibration is limited in routine settings. Our study provides a large-scale benchmark for emerging investigations on cuffless BP measurement, highlighting the need to explore additional signals or principles to enhance the accuracy in large-scale heterogeneous populations.
Collapse
|
12
|
Chu Y, Tang K, Hsu YC, Huang T, Wang D, Li W, Savitz SI, Jiang X, Shams S. Non-invasive arterial blood pressure measurement and SpO 2 estimation using PPG signal: a deep learning framework. BMC Med Inform Decis Mak 2023; 23:131. [PMID: 37480040 PMCID: PMC10362790 DOI: 10.1186/s12911-023-02215-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/22/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Monitoring blood pressure and peripheral capillary oxygen saturation plays a crucial role in healthcare management for patients with chronic diseases, especially hypertension and vascular disease. However, current blood pressure measurement methods have intrinsic limitations; for instance, arterial blood pressure is measured by inserting a catheter in the artery causing discomfort and infection. METHOD Photoplethysmogram (PPG) signals can be collected via non-invasive devices, and therefore have stimulated researchers' interest in exploring blood pressure estimation using machine learning and PPG signals as a non-invasive alternative. In this paper, we propose a Transformer-based deep learning architecture that utilizes PPG signals to conduct a personalized estimation of arterial systolic blood pressure, arterial diastolic blood pressure, and oxygen saturation. RESULTS The proposed method was evaluated with a subset of 1,732 subjects from the publicly available ICU dataset MIMIC III. The mean absolute error is 2.52 ± 2.43 mmHg for systolic blood pressure, 1.37 ± 1.89 mmHg for diastolic blood pressure, and 0.58 ± 0.79% for oxygen saturation, which satisfies the requirements of the Association of Advancement of Medical Instrumentation standard and achieve grades A for the British Hypertension Society standard. CONCLUSIONS The results indicate that our model meets clinical standards and could potentially boost the accuracy of blood pressure and oxygen saturation measurement to deliver high-quality healthcare.
Collapse
Affiliation(s)
- Yan Chu
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kaichen Tang
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yu-Chun Hsu
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tongtong Huang
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dulin Wang
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wentao Li
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean I Savitz
- Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoqian Jiang
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
- Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shayan Shams
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Applied Data Science, San Jose State University, One Washington Sq, San Jose, CA, 95192, USA.
| |
Collapse
|
13
|
Alawieh H, Weiss N. A Novel Form Factor For PPG-based Blood Pressure Monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083075 DOI: 10.1109/embc40787.2023.10341192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Blood pressure (BP) is one of the four main vital signs in medicine and may be a useful signal for wellness tracking and for user-aware interfaces in human-computer interaction. The current standard for BP measurement uses cuff-based devices that block an artery temporarily to get a single, discrete measurement of BP. Recently, there have been significant efforts to measure correlates of BP continuously and non-invasively from relevant signals like photoplethysmography (PPG), which responds to volumetric changes in arteries due to blood pulsations. In this paper, we explore a novel setup with two points of instrumentation, one on the head and a second on the wrist, for recording PPG and estimating the pulse wave velocity, which is a major correlate of BP, along with other waveform-related features. We prospectively tested the device on 10 subjects who followed a protocol for the deliberate variation of BP while ground truth measurements were taken using a reference cuff-device. Generic absolute BP models, which use the collected data for leave-one-subject-out cross-validation, yielded an error of -0.14 ± 7.3 mmHg for systolic BP (SBP) and -0.21±6.7 mmHg for diastolic BP (DBP), which are within the regulatory limits of 5 ± 8 mmHg. Notably, the correlation between the predicted BPs and the ground truth BPs was higher for SBP (r = 0.74, p < 0.001) than for DBP (r = 0.34, p < 0.001). The results show that the proposed form factor can extract BP-related features that could be used for continuous, cuff-less BP monitoring.
Collapse
|
14
|
Liu X, Sun Z, Li X, Song R, Yang X. VidBP: Detecting Blood Pressure from Facial Videos with Personalized Calibration. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083294 DOI: 10.1109/embc40787.2023.10340996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Recent studies have found that blood volume pulse (BVP) in facial videos contains features highly correlated to blood pressure (BP). However, the mapping from BVP features to BP varies from person to person. To address this issue, VidBP has been proposed as a BP detector that can be calibrated based on an individual's data. VidBP is pre-trained on a large dataset to extract BP-related features from BVP. Then, BVP samples and BP labels of an individual are fed into the pre-trained VidBP to create a personal dictionary of BP-related features. When estimating the individual's BP, the current BP-related feature is compared to the features saved in the dictionary, and the BP labels of the similar features are considered as the BP estimate. The performance of VidBP was evaluated on 640 samples of 16 subjects, and it demonstrated significantly lower errors in BP estimation compared to state-of-the-art methods. The personalized calibration of VidBP is a significant advantage, enabling it to better capture the unique mapping from BVP features to BP for each individual.Clinical relevance This study reports a feasible method to estimate BP from facial videos, providing a convenient and cost-effective way for home BP monitoring.
Collapse
|
15
|
Wang W, Mohseni P, Kilgore KL, Najafizadeh L. PulseDB: A large, cleaned dataset based on MIMIC-III and VitalDB for benchmarking cuff-less blood pressure estimation methods. Front Digit Health 2023; 4:1090854. [PMID: 36844249 PMCID: PMC9944565 DOI: 10.3389/fdgth.2022.1090854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/28/2022] [Indexed: 02/10/2023] Open
Abstract
There has been a growing interest in developing cuff-less blood pressure (BP) estimation methods to enable continuous BP monitoring from electrocardiogram (ECG) and/or photoplethysmogram (PPG) signals. The majority of these methods have been evaluated using publicly-available datasets, however, there exist significant discrepancies across studies with respect to the size, the number of subjects, and the applied pre-processing steps for the data that is eventually used for training and testing the models. Such differences make conducting performance comparison across models largely unfair, and mask the generalization capability of various BP estimation methods. To fill this important gap, this paper presents "PulseDB," the largest cleaned dataset to date, for benchmarking BP estimation models that also fulfills the requirements of standardized testing protocols. PulseDB contains 1) 5,245,454 high-quality 10 -s segments of ECG, PPG, and arterial BP (ABP) waveforms from 5,361 subjects retrieved from the MIMIC-III waveform database matched subset and the VitalDB database; 2) subjects' identification and demographic information, that can be utilized as additional input features to improve the performance of BP estimation models, or to evaluate the generalizability of the models to data from unseen subjects; and 3) positions of the characteristic points of the ECG/PPG signals, making PulseDB directly usable for training deep learning models with minimal data pre-processing. Additionally, using this dataset, we conduct the first study to provide insights about the performance gap between calibration-based and calibration-free testing approaches for evaluating generalizability of the BP estimation models. We expect PulseDB, as a user-friendly, large, comprehensive and multi-functional dataset, to be used as a reliable source for the evaluation of cuff-less BP estimation methods.
Collapse
Affiliation(s)
- Weinan Wang
- Integrated Systems and NeuroImaging Laboratory, Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, United States
| | - Pedram Mohseni
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Kevin L. Kilgore
- Department of Physical Medicine & Rehabilitation, Case Western Reserve University and The MetroHealth System, Cleveland, OH, United States
| | - Laleh Najafizadeh
- Integrated Systems and NeuroImaging Laboratory, Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
16
|
Gupta S, Singh A, Sharma A. Exploiting moving slope features of PPG derivatives for estimation of mean arterial pressure. Biomed Eng Lett 2023; 13:1-9. [PMID: 36711158 PMCID: PMC9873885 DOI: 10.1007/s13534-022-00247-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/24/2022] [Accepted: 09/17/2022] [Indexed: 02/01/2023] Open
Abstract
Monitoring Mean Arterial Pressure (MAP) helps calculate the arteries' flow, resistance, and pressure. It allows doctors to check how well the blood flows through our body and reaches all major organs. Photoplethysmogram technology is gaining momentum and popularity in smart wearable devices to monitor cuff-less blood pressure (BP). However, the performance reliability of the existing PPG-based BP estimation devices is still poor. Inaccuracy in estimating systolic and diastolic blood pressure leads to an overall imprecision in resultant MAP values. Hence, there is a need for robust and reliable MAP estimation algorithms. This work exploits the moving slope features of PPG contour in its first and second derivatives that directly correlate with MAP and does not require estimating systolic and diastolic blood pressure values. The proposed approach is evaluated using two different data sets (i.e., MIMIC-I and MIMIC-II) to demonstrate the robustness and reliability of the work for personalized non-invasive BP monitoring devices to estimate MAP directly. A mean absolute error of 1.28 mmHg and a standard deviation of 2.50 mmHg is obtained with MIMIC-II data-set using GridSearchCV random forest regressor that outperformed most of the existing related works.
Collapse
Affiliation(s)
| | - Anurag Singh
- IIIT Naya Raipur, Raipur, Chhattisgarh 493661 India
| | | |
Collapse
|
17
|
Advances in Cuffless Continuous Blood Pressure Monitoring Technology Based on PPG Signals. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8094351. [PMID: 36217389 PMCID: PMC9547685 DOI: 10.1155/2022/8094351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Objective. To review the progress of research on photoplethysmography- (PPG-) based cuffless continuous blood pressure monitoring technologies and prospect the challenges that need to be addressed in the future. Methods. Using Web of Science and PubMed as search engines, the literature on cuffless continuous blood pressure studies using PPG signals in the recent five years were searched. Results. Based on the retrieved literature, this paper describes the available open datasets, commonly used signal preprocessing methods, and model evaluation criteria. Early researches employed multisite PPG signals to calculate pulse wave velocity or time and predicted blood pressure by a simple linear equation. Later, extensive researches were dedicated to mine the features of PPG signals related to blood pressure and regressed blood pressure by machine learning models. Most recently, many researches have emerged to experiment with complex deep learning models for blood pressure prediction with the raw PPG signal as input. Conclusion. This paper summarized the methods in the retrieved literature, provided insight into the artificial intelligence algorithms employed in the literature, and concluded with a discussion of the challenges and opportunities for the development of cuffless continuous blood pressure monitoring technologies.
Collapse
|