1
|
Wang H, Wang KN, Hua J, Tang Y, Chen Y, Zhou GQ, Li S. Dynamic spectrum-driven hierarchical learning network for polyp segmentation. Med Image Anal 2025; 101:103449. [PMID: 39847953 DOI: 10.1016/j.media.2024.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025]
Abstract
Accurate automatic polyp segmentation in colonoscopy is crucial for the prompt prevention of colorectal cancer. However, the heterogeneous nature of polyps and differences in lighting and visibility conditions present significant challenges in achieving reliable and consistent segmentation across different cases. Therefore, this study proposes a novel dynamic spectrum-driven hierarchical learning model (DSHNet), the first to specifically leverage image frequency domain information to explore region-level salience differences among and within polyps for precise segmentation. A novel spectral decoupler is advanced to separate low-frequency and high-frequency components, leveraging their distinct characteristics to guide the model in learning valuable frequency features without bias through automatic masking. The low-frequency driven region-level saliency modeling then generates dynamic convolution kernels with individual frequency-aware features, which regulate region-level saliency modeling together with the supervision of the hierarchy of labels, thus enabling adaptation to polyp heterogeneous and illumination variation simultaneously. Meanwhile, the high-frequency attention module is designed to preserve the detailed information at the skip connections, which complements the focus on spatial features at various stages. Experimental results demonstrate that the proposed method outperforms other state-of-the-art polyp segmentation techniques, achieving robust and superior results on five diverse datasets. Codes are available at https://github.com/gardnerzhou/DSHNet.
Collapse
Affiliation(s)
- Haolin Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China
| | - Kai-Ni Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China
| | - Jie Hua
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China
| | - Yang Chen
- Laboratory of Image Science and Technology, Southeast University, Nanjing, China; Key Laboratory of Computer Network and Information Integration, Southeast University, Nanjing, China
| | - Guang-Quan Zhou
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China.
| | - Shuo Li
- Department of Computer and Data Science and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
2
|
Chu J, Liu W, Tian Q, Lu W. PFPRNet: A Phase-Wise Feature Pyramid With Retention Network for Polyp Segmentation. IEEE J Biomed Health Inform 2025; 29:1137-1150. [PMID: 40030242 DOI: 10.1109/jbhi.2024.3500026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Early detection of colonic polyps is crucial for the prevention and diagnosis of colorectal cancer. Currently, deep learning-based polyp segmentation methods have become mainstream and achieved remarkable results. Acquiring a large number of labeled data is time-consuming and labor-intensive, and meanwhile the presence of numerous similar wrinkles in polyp images also hampers model prediction performance. In this paper, we propose a novel approach called Phase-wise Feature Pyramid with Retention Network (PFPRNet), which leverages a pre-trained Transformer-based Encoder to obtain multi-scale feature maps. A Phase-wise Feature Pyramid with Retention Decoder is designed to gradually integrate global features into local features and guide the model's attention towards key regions. Additionally, our custom Enhance Perception module enables capturing image information from a broader perspective. Finally, we introduce an innovative Low-layer Retention module as an alternative to Transformer for more efficient global attention modeling. Evaluation results on several widely-used polyp segmentation datasets demonstrate that our proposed method has strong learning ability and generalization capability, and outperforms the state-of-the-art approaches.
Collapse
|
3
|
Wei X, Sun J, Su P, Wan H, Ning Z. BCL-Former: Localized Transformer Fusion with Balanced Constraint for polyp image segmentation. Comput Biol Med 2024; 182:109182. [PMID: 39341109 DOI: 10.1016/j.compbiomed.2024.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Polyp segmentation remains challenging for two reasons: (a) the size and shape of colon polyps are variable and diverse; (b) the distinction between polyps and mucosa is not obvious. To solve the above two challenging problems and enhance the generalization ability of segmentation method, we propose the Localized Transformer Fusion with Balanced Constraint (BCL-Former) for Polyp Segmentation. In BCL-Former, the Strip Local Enhancement module (SLE module) is proposed to capture the enhanced local features. The Progressive Feature Fusion module (PFF module) is presented to make the feature aggregation smoother and eliminate the difference between high-level and low-level features. Moreover, the Tversky-based Appropriate Constrained Loss (TacLoss) is proposed to achieve the balance and constraint between True Positives and False Negatives, improving the ability to generalize across datasets. Extensive experiments are conducted on four benchmark datasets. Results show that our proposed method achieves state-of-the-art performance in both segmentation precision and generalization ability. Also, the proposed method is 5%-8% faster than the benchmark method in training and inference. The code is available at: https://github.com/sjc-lbj/BCL-Former.
Collapse
Affiliation(s)
- Xin Wei
- School of Software, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Jiacheng Sun
- School of Software, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Pengxiang Su
- School of Software, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Huan Wan
- School of Computer Information Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Zhitao Ning
- School of Software, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| |
Collapse
|
4
|
Tong Y, Chen Z, Zhou Z, Hu Y, Li X, Qiao X. An Edge-Enhanced Network for Polyp Segmentation. Bioengineering (Basel) 2024; 11:959. [PMID: 39451335 PMCID: PMC11504364 DOI: 10.3390/bioengineering11100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer remains a leading cause of cancer-related deaths worldwide, with early detection and removal of polyps being critical in preventing disease progression. Automated polyp segmentation, particularly in colonoscopy images, is a challenging task due to the variability in polyp appearance and the low contrast between polyps and surrounding tissues. In this work, we propose an edge-enhanced network (EENet) designed to address these challenges by integrating two novel modules: the covariance edge-enhanced attention (CEEA) and cross-scale edge enhancement (CSEE) modules. The CEEA module leverages covariance-based attention to enhance boundary detection, while the CSEE module bridges multi-scale features to preserve fine-grained edge details. To further improve the accuracy of polyp segmentation, we introduce a hybrid loss function that combines cross-entropy loss with edge-aware loss. Extensive experiments show that the EENet achieves a Dice score of 0.9208 and an IoU of 0.8664 on the Kvasir-SEG dataset, surpassing state-of-the-art models such as Polyp-PVT and PraNet. Furthermore, it records a Dice score of 0.9316 and an IoU of 0.8817 on the CVC-ClinicDB dataset, demonstrating its strong potential for clinical application in polyp segmentation. Ablation studies further validate the contribution of the CEEA and CSEE modules.
Collapse
Affiliation(s)
- Yao Tong
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.T.); (Z.Z.); (Y.H.)
- Jiangsu Province Engineering Research Center of TCM Intelligence Health Service, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziqi Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
| | - Zuojian Zhou
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.T.); (Z.Z.); (Y.H.)
- Jiangsu Province Engineering Research Center of TCM Intelligence Health Service, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun Hu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.T.); (Z.Z.); (Y.H.)
- Jiangsu Province Engineering Research Center of TCM Intelligence Health Service, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Li
- College of Computer Science and Software Engineering, Hohai University, Nanjing 211100, China;
| | - Xuebin Qiao
- Jiangsu Province Engineering Research Center of TCM Intelligence Health Service, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Meng L, Li Y, Duan W. Three-stage polyp segmentation network based on reverse attention feature purification with Pyramid Vision Transformer. Comput Biol Med 2024; 179:108930. [PMID: 39067285 DOI: 10.1016/j.compbiomed.2024.108930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Colorectal polyps serve as potential precursors of colorectal cancer and automating polyp segmentation aids physicians in accurately identifying potential polyp regions, thereby reducing misdiagnoses and missed diagnoses. However, existing models often fall short in accurately segmenting polyps due to the high degree of similarity between polyp regions and surrounding tissue in terms of color, texture, and shape. To address this challenge, this study proposes a novel three-stage polyp segmentation network, named Reverse Attention Feature Purification with Pyramid Vision Transformer (RAFPNet), which adopts an iterative feedback UNet architecture to refine polyp saliency maps for precise segmentation. Initially, a Multi-Scale Feature Aggregation (MSFA) module is introduced to generate preliminary polyp saliency maps. Subsequently, a Reverse Attention Feature Purification (RAFP) module is devised to effectively suppress low-level surrounding tissue features while enhancing high-level semantic polyp information based on the preliminary saliency maps. Finally, the UNet architecture is leveraged to further refine the feature maps in a coarse-to-fine approach. Extensive experiments conducted on five widely used polyp segmentation datasets and three video polyp segmentation datasets demonstrate the superior performance of RAFPNet over state-of-the-art models across multiple evaluation metrics.
Collapse
Affiliation(s)
- Lingbing Meng
- School of Computer and Software Engineering, Anhui Institute of Information Technology, China
| | - Yuting Li
- School of Computer and Software Engineering, Anhui Institute of Information Technology, China
| | - Weiwei Duan
- School of Computer and Software Engineering, Anhui Institute of Information Technology, China.
| |
Collapse
|
6
|
Wan L, Chen Z, Xiao Y, Zhao J, Feng W, Fu H. Iterative feedback-based models for image and video polyp segmentation. Comput Biol Med 2024; 177:108569. [PMID: 38781640 DOI: 10.1016/j.compbiomed.2024.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/27/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Accurate segmentation of polyps in colonoscopy images has gained significant attention in recent years, given its crucial role in automated colorectal cancer diagnosis. Many existing deep learning-based methods follow a one-stage processing pipeline, often involving feature fusion across different levels or utilizing boundary-related attention mechanisms. Drawing on the success of applying Iterative Feedback Units (IFU) in image polyp segmentation, this paper proposes FlowICBNet by extending the IFU to the domain of video polyp segmentation. By harnessing the unique capabilities of IFU to propagate and refine past segmentation results, our method proves effective in mitigating challenges linked to the inherent limitations of endoscopic imaging, notably the presence of frequent camera shake and frame defocusing. Furthermore, in FlowICBNet, we introduce two pivotal modules: Reference Frame Selection (RFS) and Flow Guided Warping (FGW). These modules play a crucial role in filtering and selecting the most suitable historical reference frames for the task at hand. The experimental results on a large video polyp segmentation dataset demonstrate that our method can significantly outperform state-of-the-art methods by notable margins achieving an average metrics improvement of 7.5% on SUN-SEG-Easy and 7.4% on SUN-SEG-Hard. Our code is available at https://github.com/eraserNut/ICBNet.
Collapse
Affiliation(s)
- Liang Wan
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.
| | - Zhihao Chen
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.
| | - Yefan Xiao
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.
| | - Junting Zhao
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.
| | - Wei Feng
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.
| | - Huazhu Fu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Republic of Singapore.
| |
Collapse
|
7
|
Jha D, Tomar NK, Bhattacharya D, Biswas K, Bagci U. TransRUPNet for Improved Polyp Segmentation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40038943 DOI: 10.1109/embc53108.2024.10781511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Colorectal cancer is among the most common cause of cancer worldwide. Removal of precancerous polyps through early detection is essential to prevent them from progressing to colon cancer. We develop an advanced deep learning-based architecture, Transformer based Residual Upsampling Network (TransRUPNet) for automatic and real-time polyp segmentation. The proposed architecture, TransRUPNet, is an encoder-decoder network consisting of three encoder and decoder blocks with additional upsampling blocks at the end of the network. With the image size of 256×256, the proposed method achieves an excellent real-time operation speed of 47.07 frames per second with an average mean dice coefficient score of 0.7786 and mean Intersection over Union of 0.7210 on the out-of-distribution polyp datasets. The results on the publicly available PolypGen dataset suggest that TransRUPNet can give real-time feedback while retaining high accuracy for in-distribution datasets. Furthermore, we demonstrate the generalizability of the proposed method by showing that it significantly improves performance on out-of-distribution dataset compared to the existing methods. The source code of our network is available at https://github.com/DebeshJha/TransRUPNet.
Collapse
|
8
|
Jiang Q, Ye H, Yang B, Cao F. Label-Decoupled Medical Image Segmentation With Spatial-Channel Graph Convolution and Dual Attention Enhancement. IEEE J Biomed Health Inform 2024; 28:2830-2841. [PMID: 38376972 DOI: 10.1109/jbhi.2024.3367756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Deep learning-based methods have been widely used in medical image segmentation recently. However, existing works are usually difficult to simultaneously capture global long-range information from images and topological correlations among feature maps. Further, medical images often suffer from blurred target edges. Accordingly, this paper proposes a novel medical image segmentation framework named a label-decoupled network with spatial-channel graph convolution and dual attention enhancement mechanism (LADENet for short). It constructs learnable adjacency matrices and utilizes graph convolutions to effectively capture global long-range information on spatial locations and topological dependencies between different channels in an image. Then a label-decoupled strategy based on distance transformation is introduced to decouple an original segmentation label into a body label and an edge label for supervising the body branch and edge branch. Again, a dual attention enhancement mechanism, designing a body attention block in the body branch and an edge attention block in the edge branch, is built to promote the learning ability of spatial region and boundary features. Besides, a feature interactor is devised to fully consider the information interaction between the body and edge branches to improve segmentation performance. Experiments on benchmark datasets reveal the superiority of LADENet compared to state-of-the-art approaches.
Collapse
|
9
|
Wang Z, Yu L, Tian S, Huo X. CRMEFNet: A coupled refinement, multiscale exploration and fusion network for medical image segmentation. Comput Biol Med 2024; 171:108202. [PMID: 38402839 DOI: 10.1016/j.compbiomed.2024.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/22/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Accurate segmentation of target areas in medical images, such as lesions, is essential for disease diagnosis and clinical analysis. In recent years, deep learning methods have been intensively researched and have generated significant progress in medical image segmentation tasks. However, most of the existing methods have limitations in modeling multilevel feature representations and identification of complex textured pixels at contrasting boundaries. This paper proposes a novel coupled refinement and multiscale exploration and fusion network (CRMEFNet) for medical image segmentation, which explores in the optimization and fusion of multiscale features to address the abovementioned limitations. The CRMEFNet consists of three main innovations: a coupled refinement module (CRM), a multiscale exploration and fusion module (MEFM), and a cascaded progressive decoder (CPD). The CRM decouples features into low-frequency body features and high-frequency edge features, and performs targeted optimization of both to enhance intraclass uniformity and interclass differentiation of features. The MEFM performs a two-stage exploration and fusion of multiscale features using our proposed multiscale aggregation attention mechanism, which explores the differentiated information within the cross-level features, and enhances the contextual connections between the features, to achieves adaptive feature fusion. Compared to existing complex decoders, the CPD decoder (consisting of the CRM and MEFM) can perform fine-grained pixel recognition while retaining complete semantic location information. It also has a simple design and excellent performance. The experimental results from five medical image segmentation tasks, ten datasets and twelve comparison models demonstrate the state-of-the-art performance, interpretability, flexibility and versatility of our CRMEFNet.
Collapse
Affiliation(s)
- Zhi Wang
- College of Software, Xinjiang University, Urumqi, 830000, China; Key Laboratory of Software Engineering Technology, Xinjiang University, Urumqi, 830000, China
| | - Long Yu
- College of Network Center, Xinjiang University, Urumqi, 830000, China; Signal and Signal Processing Laboratory, College of Information Science and Engineering, Xinjiang University, Urumqi, 830000, China.
| | - Shengwei Tian
- College of Software, Xinjiang University, Urumqi, 830000, China; Key Laboratory of Software Engineering Technology, Xinjiang University, Urumqi, 830000, China
| | - Xiangzuo Huo
- Key Laboratory of Software Engineering Technology, Xinjiang University, Urumqi, 830000, China; Signal and Signal Processing Laboratory, College of Information Science and Engineering, Xinjiang University, Urumqi, 830000, China
| |
Collapse
|
10
|
Yue G, Zhuo G, Yan W, Zhou T, Tang C, Yang P, Wang T. Boundary uncertainty aware network for automated polyp segmentation. Neural Netw 2024; 170:390-404. [PMID: 38029720 DOI: 10.1016/j.neunet.2023.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/15/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Recently, leveraging deep neural networks for automated colorectal polyp segmentation has emerged as a hot topic due to the favored advantages in evading the limitations of visual inspection, e.g., overwork and subjectivity. However, most existing methods do not pay enough attention to the uncertain areas of colonoscopy images and often provide unsatisfactory segmentation performance. In this paper, we propose a novel boundary uncertainty aware network (BUNet) for precise and robust colorectal polyp segmentation. Specifically, considering that polyps vary greatly in size and shape, we first adopt a pyramid vision transformer encoder to learn multi-scale feature representations. Then, a simple yet effective boundary exploration module (BEM) is proposed to explore boundary cues from the low-level features. To make the network focus on the ambiguous area where the prediction score is biased to neither the foreground nor the background, we further introduce a boundary uncertainty aware module (BUM) that explores error-prone regions from the high-level features with the assistance of boundary cues provided by the BEM. Through the top-down hybrid deep supervision, our BUNet implements coarse-to-fine polyp segmentation and finally localizes polyp regions precisely. Extensive experiments on five public datasets show that BUNet is superior to thirteen competing methods in terms of both effectiveness and generalization ability.
Collapse
Affiliation(s)
- Guanghui Yue
- National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Guibin Zhuo
- National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Weiqing Yan
- School of Computer and Control Engineering, Yantai University, Yantai 264005, China
| | - Tianwei Zhou
- College of Management, Shenzhen University, Shenzhen 518060, China.
| | - Chang Tang
- School of Computer Science, China University of Geosciences, Wuhan 430074, China
| | - Peng Yang
- National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Tianfu Wang
- National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
11
|
Moghtaderi S, Yaghoobian O, Wahid KA, Lukong KE. Endoscopic Image Enhancement: Wavelet Transform and Guided Filter Decomposition-Based Fusion Approach. J Imaging 2024; 10:28. [PMID: 38276320 PMCID: PMC10816908 DOI: 10.3390/jimaging10010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Endoscopies are helpful for examining internal organs, including the gastrointestinal tract. The endoscope device consists of a flexible tube to which a camera and light source are attached. The diagnostic process heavily depends on the quality of the endoscopic images. That is why the visual quality of endoscopic images has a significant effect on patient care, medical decision-making, and the efficiency of endoscopic treatments. In this study, we propose an endoscopic image enhancement technique based on image fusion. Our method aims to improve the visual quality of endoscopic images by first generating multiple sub images from the single input image which are complementary to one another in terms of local and global contrast. Then, each sub layer is subjected to a novel wavelet transform and guided filter-based decomposition technique. To generate the final improved image, appropriate fusion rules are utilized at the end. A set of upper gastrointestinal tract endoscopic images were put to the test in studies to confirm the efficacy of our strategy. Both qualitative and quantitative analyses show that the proposed framework performs better than some of the state-of-the-art algorithms.
Collapse
Affiliation(s)
- Shiva Moghtaderi
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (O.Y.); (K.A.W.)
| | - Omid Yaghoobian
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (O.Y.); (K.A.W.)
| | - Khan A. Wahid
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (O.Y.); (K.A.W.)
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| |
Collapse
|
12
|
Zhang D, Li A, Wu W, Yu L, Kang X, Huo X. CR-Conformer: a fusion network for clinical skin lesion classification. Med Biol Eng Comput 2024; 62:85-94. [PMID: 37653185 DOI: 10.1007/s11517-023-02904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Deep convolutional neural network (DCNN) models have been widely used to diagnose skin lesions, and some of them have achieved diagnostic results comparable to or even better than dermatologists. Most publicly available skin lesion datasets used to train DCNN were dermoscopic images. Expensive dermoscopic equipment is rarely available in rural clinics or small hospitals in remote areas. Therefore, it is of great significance to rely on clinical images for computer-aided diagnosis of skin lesions. This paper proposes an improved dual-branch fusion network called CR-Conformer. It integrates a DCNN branch that can effectively extract local features and a Transformer branch that can extract global features to capture more valuable features in clinical skin lesion images. In addition, we improved the DCNN branch to extract enhanced features in four directions through the convolutional rotation operation, further improving the classification performance of clinical skin lesion images. To verify the effectiveness of our proposed method, we conducted comprehensive tests on a private dataset named XJUSL, which contains ten types of clinical skin lesions. The test results indicate that our proposed method reduced the number of parameters by 11.17 M and improved the accuracy of clinical skin lesion image classification by 1.08%. It has the potential to realize automatic diagnosis of skin lesions in mobile devices.
Collapse
Affiliation(s)
- Dezhi Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Aolun Li
- School of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Weidong Wu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China.
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China.
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China.
| | - Long Yu
- School of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiangzuo Huo
- School of Information Science and Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
13
|
Jain S, Atale R, Gupta A, Mishra U, Seal A, Ojha A, Jaworek-Korjakowska J, Krejcar O. CoInNet: A Convolution-Involution Network With a Novel Statistical Attention for Automatic Polyp Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3987-4000. [PMID: 37768798 DOI: 10.1109/tmi.2023.3320151] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Polyps are very common abnormalities in human gastrointestinal regions. Their early diagnosis may help in reducing the risk of colorectal cancer. Vision-based computer-aided diagnostic systems automatically identify polyp regions to assist surgeons in their removal. Due to their varying shape, color, size, texture, and unclear boundaries, polyp segmentation in images is a challenging problem. Existing deep learning segmentation models mostly rely on convolutional neural networks that have certain limitations in learning the diversity in visual patterns at different spatial locations. Further, they fail to capture inter-feature dependencies. Vision transformer models have also been deployed for polyp segmentation due to their powerful global feature extraction capabilities. But they too are supplemented by convolution layers for learning contextual local information. In the present paper, a polyp segmentation model CoInNet is proposed with a novel feature extraction mechanism that leverages the strengths of convolution and involution operations and learns to highlight polyp regions in images by considering the relationship between different feature maps through a statistical feature attention unit. To further aid the network in learning polyp boundaries, an anomaly boundary approximation module is introduced that uses recursively fed feature fusion to refine segmentation results. It is indeed remarkable that even tiny-sized polyps with only 0.01% of an image area can be precisely segmented by CoInNet. It is crucial for clinical applications, as small polyps can be easily overlooked even in the manual examination due to the voluminous size of wireless capsule endoscopy videos. CoInNet outperforms thirteen state-of-the-art methods on five benchmark polyp segmentation datasets.
Collapse
|
14
|
Lee GE, Cho J, Choi SI. Shallow and reverse attention network for colon polyp segmentation. Sci Rep 2023; 13:15243. [PMID: 37709828 PMCID: PMC10502036 DOI: 10.1038/s41598-023-42436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Polyp segmentation is challenging because the boundary between polyps and mucosa is ambiguous. Several models have considered the use of attention mechanisms to solve this problem. However, these models use only finite information obtained from a single type of attention. We propose a new dual-attention network based on shallow and reverse attention modules for colon polyps segmentation called SRaNet. The shallow attention mechanism removes background noise while emphasizing the locality by focusing on the foreground. In contrast, reverse attention helps distinguish the boundary between polyps and mucous membranes more clearly by focusing on the background. The two attention mechanisms are adaptively fused using a "Softmax Gate". Combining the two types of attention enables the model to capture complementary foreground and boundary features. Therefore, the proposed model predicts the boundaries of polyps more accurately than other models. We present the results of extensive experiments on polyp benchmarks to show that the proposed method outperforms existing models on both seen and unseen data. Furthermore, the results show that the proposed dual attention module increases the explainability of the model.
Collapse
Affiliation(s)
- Go-Eun Lee
- Department of Computer Science and Engineering, Dankook University, Yongin, 16890, South Korea
| | - Jungchan Cho
- School of Computing, Gachon University, Seongnam, 13120, South Korea.
| | - Sang-Ii Choi
- Department of Computer Science and Engineering, Dankook University, Yongin, 16890, South Korea.
| |
Collapse
|
15
|
Yue G, Zhuo G, Li S, Zhou T, Du J, Yan W, Hou J, Liu W, Wang T. Benchmarking Polyp Segmentation Methods in Narrow-Band Imaging Colonoscopy Images. IEEE J Biomed Health Inform 2023; 27:3360-3371. [PMID: 37099473 DOI: 10.1109/jbhi.2023.3270724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
In recent years, there has been significant progress in polyp segmentation in white-light imaging (WLI) colonoscopy images, particularly with methods based on deep learning (DL). However, little attention has been paid to the reliability of these methods in narrow-band imaging (NBI) data. NBI improves visibility of blood vessels and helps physicians observe complex polyps more easily than WLI, but NBI images often include polyps with small/flat appearances, background interference, and camouflage properties, making polyp segmentation a challenging task. This paper proposes a new polyp segmentation dataset (PS-NBI2K) consisting of 2,000 NBI colonoscopy images with pixel-wise annotations, and presents benchmarking results and analyses for 24 recently reported DL-based polyp segmentation methods on PS-NBI2K. The results show that existing methods struggle to locate polyps with smaller sizes and stronger interference, and that extracting both local and global features improves performance. There is also a trade-off between effectiveness and efficiency, and most methods cannot achieve the best results in both areas simultaneously. This work highlights potential directions for designing DL-based polyp segmentation methods in NBI colonoscopy images, and the release of PS-NBI2K aims to drive further development in this field.
Collapse
|
16
|
Du J, Guan K, Liu P, Li Y, Wang T. Boundary-Sensitive Loss Function With Location Constraint for Hard Region Segmentation. IEEE J Biomed Health Inform 2023; 27:992-1003. [PMID: 36378793 DOI: 10.1109/jbhi.2022.3222390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In computer-aided diagnosis and treatment planning, accurate segmentation of medical images plays an essential role, especially for some hard regions including boundaries, small objects and background interference. However, existing segmentation loss functions including distribution-, region- and boundary-based losses cannot achieve satisfactory performances on these hard regions. In this paper, a boundary-sensitive loss function with location constraint is proposed for hard region segmentation in medical images, which provides three advantages: i) our Boundary-Sensitive loss (BS-loss) can automatically pay more attention to the hard-to-segment boundaries (e.g., thin structures and blurred boundaries), thus obtaining finer object boundaries; ii) BS-loss also can adjust its attention to small objects during training to segment them more accurately; and iii) our location constraint can alleviate the negative impact of the background interference, through the distribution matching of pixels between prediction and Ground Truth (GT) along each axis. By resorting to the proposed BS-loss and location constraint, the hard regions in both foreground and background are considered. Experimental results on three public datasets demonstrate the superiority of our method. Specifically, compared to the second-best method tested in this study, our method improves performance on hard regions in terms of Dice similarity coefficient (DSC) and 95% Hausdorff distance (95%HD) of up to 4.17% and 73% respectively. In addition, it also achieves the best overall segmentation performance. Hence, we can conclude that our method can accurately segment these hard regions and improve the overall segmentation performance in medical images.
Collapse
|
17
|
Attention-Driven Cascaded Network for Diabetic Retinopathy Grading from Fundus Images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
A Machine Learning Approach Using XGBoost Predicts Lung Metastasis in Patients with Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8501819. [PMID: 36277898 PMCID: PMC9581702 DOI: 10.1155/2022/8501819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022]
Abstract
Background Liver metastasis (LM) is an independent risk factor that affects the prognosis of patients with ovarian cancer; however, there is still a lack of prediction. This study developed a limit gradient enhancement (XGBoost) to predict the risk of lung metastasis in newly diagnosed patients with ovarian cancer, thereby improving prediction efficiency. Patients and Methods. Data of patients diagnosed with ovarian cancer in the Surveillance, Epidemiology, and Final Results (SEER) database from 2010 to 2015 were retrospectively collected. The XGBoost algorithm was used to establish a lung metastasis model for patients with ovarian cancer. The performance of the predictive model was tested by the area under the curve (AUC) of the receiver operating characteristic curve (ROC). Results The results of the XGBoost algorithm showed that the top five important factors were age, laterality, histological type, grade, and marital status. XGBoost showed good discriminative ability, with an AUC of 0.843. Accuracy, sensitivity, and specificity were 0.982, 1.000, and 0.686, respectively. Conclusion This study is the first to develop a machine-learning-based prediction model for lung metastasis in patients with ovarian cancer. The prediction model based on the XGBoost algorithm has a higher accuracy rate than traditional logistic regression and can be used to predict the risk of lung metastasis in newly diagnosed patients with ovarian cancer.
Collapse
|
19
|
Yue G, Han W, Li S, Zhou T, Lv J, Wang T. Automated polyp segmentation in colonoscopy images via deep network with lesion-aware feature selection and refinement. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|