Wang H, Hu T, Zhang Y, Zhang H, Qi Y, Wang L, Ma J, Du M. Unveiling camouflaged and partially occluded colorectal polyps: Introducing CPSNet for accurate colon polyp segmentation.
Comput Biol Med 2024;
171:108186. [PMID:
38394804 DOI:
10.1016/j.compbiomed.2024.108186]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND
Segmenting colorectal polyps presents a significant challenge due to the diverse variations in their size, shape, texture, and intricate backgrounds. Particularly demanding are the so-called "camouflaged" polyps, which are partially concealed by surrounding tissues or fluids, adding complexity to their detection.
METHODS
We present CPSNet, an innovative model designed for camouflaged polyp segmentation. CPSNet incorporates three key modules: the Deep Multi-Scale-Feature Fusion Module, the Camouflaged Object Detection Module, and the Multi-Scale Feature Enhancement Module. These modules work collaboratively to improve the segmentation process, enhancing both robustness and accuracy.
RESULTS
Our experiments confirm the effectiveness of CPSNet. When compared to state-of-the-art methods in colon polyp segmentation, CPSNet consistently outperforms the competition. Particularly noteworthy is its performance on the ETIS-LaribPolypDB dataset, where CPSNet achieved a remarkable 2.3% increase in the Dice coefficient compared to the Polyp-PVT model.
CONCLUSION
In summary, CPSNet marks a significant advancement in the field of colorectal polyp segmentation. Its innovative approach, encompassing multi-scale feature fusion, camouflaged object detection, and feature enhancement, holds considerable promise for clinical applications.
Collapse