1
|
Zheng Y, Liu M, Jiang L. Progress of photoacoustic imaging combined with targeted photoacoustic contrast agents in tumor molecular imaging. Front Chem 2022; 10:1077937. [PMID: 36479441 PMCID: PMC9720136 DOI: 10.3389/fchem.2022.1077937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
Molecular imaging visualizes, characterizes, and measures biological processes at the molecular and cellular level. In oncology, molecular imaging is an important technology to guide integrated and precise diagnosis and treatment. Photoacoustic imaging is mainly divided into three categories: photoacoustic microscopy, photoacoustic tomography and photoacoustic endoscopy. Different from traditional imaging technology, which uses the physical properties of tissues to detect and identify diseases, photoacoustic imaging uses the photoacoustic effect to obtain the internal information of tissues. During imaging, lasers excite either endogenous or exogenous photoacoustic contrast agents, which then send out ultrasonic waves. Currently, photoacoustic imaging in conjunction with targeted photoacoustic contrast agents is frequently employed in the research of tumor molecular imaging. In this study, we will examine the latest advancements in photoacoustic imaging technology and targeted photoacoustic contrast agents, as well as the developments in tumor molecular imaging research.
Collapse
Affiliation(s)
| | | | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
2
|
Martinez AF, McCachren SS, Lee M, Murphy HA, Zhu C, Crouch BT, Martin HL, Erkanli A, Rajaram N, Ashcraft KA, Fontanella AN, Dewhirst MW, Ramanujam N. Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging. Sci Rep 2018. [PMID: 29520098 PMCID: PMC5843602 DOI: 10.1038/s41598-018-22480-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many cancers adeptly modulate metabolism to thrive in fluctuating oxygen conditions; however, current tools fail to image metabolic and vascular endpoints at spatial resolutions needed to visualize these adaptations in vivo. We demonstrate a high-resolution intravital microscopy technique to quantify glucose uptake, mitochondrial membrane potential (MMP), and SO2 to characterize the in vivo phentoypes of three distinct murine breast cancer lines. Tetramethyl rhodamine, ethyl ester (TMRE) was thoroughly validated to report on MMP in normal and tumor-bearing mice. Imaging MMP or glucose uptake together with vascular endpoints revealed that metastatic 4T1 tumors maintained increased glucose uptake across all SO2 (“Warburg effect”), and also showed increased MMP relative to normal tissue. Non-metastatic 67NR and 4T07 tumor lines both displayed increased MMP, but comparable glucose uptake, relative to normal tissue. The 4T1 peritumoral areas also showed a significant glycolytic shift relative to the tumor regions. During a hypoxic stress test, 4T1 tumors showed significant increases in MMP with corresponding significant drops in SO2, indicative of intensified mitochondrial metabolism. Conversely, 4T07 and 67NR tumors shifted toward glycolysis during hypoxia. Our findings underscore the importance of imaging metabolic endpoints within the context of a living microenvironment to gain insight into a tumor’s adaptive behavior.
Collapse
Affiliation(s)
- Amy F Martinez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | - Marianne Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Helen A Murphy
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hannah L Martin
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Alaattin Erkanli
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Zhu C, Martinez AF, Martin HL, Li M, Crouch BT, Carlson DA, Haystead TAJ, Ramanujam N. Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer. Sci Rep 2017; 7:13772. [PMID: 29062013 PMCID: PMC5653871 DOI: 10.1038/s41598-017-14226-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022] Open
Abstract
While the demand for metabolic imaging has increased in recent years, simultaneous in vivo measurement of multiple metabolic endpoints remains challenging. Here we report on a novel technique that provides in vivo high-resolution simultaneous imaging of glucose uptake and mitochondrial metabolism within a dynamic tissue microenvironment. Two indicators were leveraged; 2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) reports on glucose uptake and Tetramethylrhodamine ethyl ester (TMRE) reports on mitochondrial membrane potential. Although we demonstrated that there was neither optical nor chemical crosstalk between 2-NBDG and TMRE, TMRE uptake was significantly inhibited by simultaneous injection with 2-NBDG in vivo. A staggered delivery scheme of the two agents (TMRE injection was followed by 2-NBDG injection after a 10-minute delay) permitted near-simultaneous in vivo microscopy of 2-NBDG and TMRE at the same tissue site by mitigating the interference of 2-NBDG with normal glucose usage. The staggered delivery strategy was evaluated under both normoxic and hypoxic conditions in normal tissues as well as in a murine breast cancer model. The results were consistent with those expected for independent imaging of 2-NBDG and TMRE. This optical imaging technique allows for monitoring of key metabolic endpoints with the unique benefit of repeated, non-destructive imaging within an intact microenvironment.
Collapse
Affiliation(s)
- Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Amy F Martinez
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Hannah L Martin
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Martin Li
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - David A Carlson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
4
|
Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress. Colloids Surf B Biointerfaces 2017; 158:578-588. [PMID: 28750340 DOI: 10.1016/j.colsurfb.2017.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/29/2017] [Accepted: 07/08/2017] [Indexed: 12/14/2022]
Abstract
Magnetic resonance contrast agents that can be activated in response to specific triggers hold potential as molecular biosensors that may be of great utility in non-invasive disease diagnosis. We developed an activatable agent based on superparamagnetic iron oxide nanoparticles (SPIOs) that is sensitive to oxidative stress, a factor in the pathophysiology of numerous diseases. SPIOs were coated with poly(ethylene glycol) (PEG) and complexed with poly(gallol), a synthetic tannin. Hydrogen bonding between PEG and poly(gallol) creates a complexed layer around the SPIO that decreases the interaction of solute water with the SPIO, attenuating its magnetic resonance relaxivity. The complexed interpolymer nanoparticle is in an OFF state (decreased T2 contrast), where the contrast agent has a low T2 relaxivity of 7±2mM-1s-1. In the presence of superoxides, the poly(gallol) is oxidized and the polymers decomplex, allowing solute water to again interact with the SPIO, representing an ON state (increased T2 contrast) with a T2 relaxivity of 70±10mM-1s-1. These contrast agents show promise as effective sensors for diseases characterized in part by oxidative stress such as atherosclerosis, diabetes, and cancer.
Collapse
|
5
|
Hapuarachchige S, Artemov D. Click Chemistry in the Development of Contrast Agents for Magnetic Resonance Imaging. Top Magn Reson Imaging 2016; 25:205-213. [PMID: 27748712 PMCID: PMC5082715 DOI: 10.1097/rmr.0000000000000099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry provides fast, convenient, versatile, and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce a minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving magnetic resonance imaging performance.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Saharkhiz H, Gharehaghaji N, Nazarpoor M, Mesbahi A, Pourissa M. The Effect of Inversion Time on the Relationship Between Iron Oxide Nanoparticles Concentration and Signal Intensity in T1-Weighted MR Images. IRANIAN JOURNAL OF RADIOLOGY 2014; 11:e12667. [PMID: 25035696 PMCID: PMC4090637 DOI: 10.5812/iranjradiol.12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/06/2013] [Accepted: 11/17/2013] [Indexed: 11/22/2022]
Abstract
Background: Magnetic nanoparticles have been widely applied in recent years for biomedical applications. Signal intensity (SI) of magnetic resonance (MR) images depends on the concentration of nanoparticles. It is important to find the minimum concentration of iron oxide nanoparticles that produces maximum SI and determines the minimum injection dose for clinical studies. Objectives: This study was performed to determine the relationship between the iron oxide nanoparticle concentration and SI using inversion recovery (IR) sequence in T1-weighted MR images. Materials and Methods: Different concentrations of carboxydextran-coated iron oxide nanoparticles 20 nm in size were prepared. In vitro MR imaging was performed with inversion times (TI) of 100-400 ms (interval of 20 ms) and IR Turbo-FLASH (Turbo fast low angle shot) pulse sequence using a 1.5 T MRI system. Then the SI produced by each concentration of nanoparticles was measured and the minimum nanoparticle concentration that led to the maximum SI was determined. Coil non-uniformity was also considered for measuring the accurate SI of each image. Results: The results indicate that SI depended on the concentration of nanoparticles and TI. In addition, SI increased by increasing the TIs ranging from 200 to 400 ms for all studied concentrations. The linear relationship between the nanoparticle concentrations and SI that gave a square correlation coefficient (R2) equal to 0.99 was seen up to 76.83 µmol Fe/L in 400 ms for long TI and 239.16 µmol Fe/L in 200 ms for short TI. Conclusions: TI is an important parameter to consider in the relationship between SI and nanoparticle concentrations. An increase in TI leads to a decrease in the range of linearity.
Collapse
Affiliation(s)
- Hodaiseh Saharkhiz
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Gharehaghaji
- Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding author: Nahideh Gharehaghaji, Department of Radiology, Faculty of Paramedicine, Tabriz University of Medical Sciences, Daneshgah square, Tabriz, Iran. Tel: +98-4113356911, Fax: +98-4113368733, E-mail:
| | - Mahmood Nazarpoor
- Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Mesbahi
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pourissa
- Department of Radiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Frascione D, Diwoky C, Almer G, Opriessnig P, Vonach C, Gradauer K, Leitinger G, Mangge H, Stollberger R, Prassl R. Ultrasmall superparamagnetic iron oxide (USPIO)-based liposomes as magnetic resonance imaging probes. Int J Nanomedicine 2012; 7:2349-59. [PMID: 22661890 PMCID: PMC3357980 DOI: 10.2147/ijn.s30617] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magnetic and/or paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI). MLs have an advantage over free magnetic nanocores, in that various functional groups can be attached to the surface of liposomes for ligand-specific targeting. We have synthesized PEG-coated sterically-stabilized magnetic liposomes (sMLs) containing ultrasmall superparamagnetic iron oxides (USPIOs) with the aim of generating stable liposomal carriers equipped with a high payload of USPIOs for enhanced MRI contrast. Methods Regarding iron oxide nanoparticles, we have applied two different commercially available surface-coated USPIOs; sMLs synthesized and loaded with USPIOs were compared in terms of magnetization and colloidal stability. The average diameter size, morphology, phospholipid membrane fluidity, and the iron content of the sMLs were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), fluorescence polarization, and absorption spectroscopy, respectively. A colorimetric assay using potassium thiocyanate (KSCN) was performed to evaluate the encapsulation efficiency (EE%) to express the amount of iron enclosed into a liposome. Subsequently, MRI measurements were carried out in vitro in agarose gel phantoms to evaluate the signal enhancement on T1- and T2-weighted sequences of sMLs. To monitor the biodistribution and the clearance of the particles over time in vivo, sMLs were injected in wild type mice. Results DLS revealed a mean particle diameter of sMLs in the range between 100 and 200 nm, as confirmed by TEM. An effective iron oxide loading was achieved just for one type of USPIO, with an EE% between 74% and 92%, depending on the initial Fe concentration (being higher for lower amounts of Fe). MRI measurements demonstrated the applicability of these nanostructures as MRI probes. Conclusion Our results show that the development of sMLs is strictly dependent on the physicochemical characteristics of the nanocores. Once established, sMLs can be further modified to enable noninvasive targeted molecular imaging.
Collapse
Affiliation(s)
- Daniela Frascione
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Doiron AL, Homan KA, Emelianov S, Brannon-Peppas L. Poly(lactic-co-glycolic) acid as a carrier for imaging contrast agents. Pharm Res 2008; 26:674-82. [PMID: 19034628 DOI: 10.1007/s11095-008-9786-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 11/04/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE With the broadening field of nanomedicine poised for future molecular level therapeutics, nano- and microparticles intended for the augmentation of either single- or multimodal imaging are created with PLGA as the chief constituent and carrier. METHODS Emulsion techniques were used to encapsulate hydrophilic and hydrophobic imaging contrast agents in PLGA particles. The imaging contrast properties of these PLGA particles were further enhanced by reducing silver onto the PLGA surface, creating a silver cage around the polymeric core. RESULTS The MRI contrast agent Gd-DTPA and the exogenous dye rhodamine 6G were both encapsulated in PLGA and shown to enhance MR and fluorescence contrast, respectively. The silver nanocage built around PLGA nanoparticles exhibited strong near infrared light absorbance properties, making it a suitable contrast agent for optical imaging strategies such as photoacoustic imaging. CONCLUSIONS The biodegradable polymer PLGA is an extremely versatile nano- and micro-carrier for several imaging contrast agents with the possibility of targeting diseased states at a molecular level.
Collapse
Affiliation(s)
- Amber L Doiron
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | | | | | | |
Collapse
|
9
|
Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 2008; 105:3705-10. [PMID: 18319342 DOI: 10.1073/pnas.0711622105] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.
Collapse
|
10
|
Khalidov I, Van De Ville D, Jacob M, Lazeyras F, Unser M. BSLIM: spectral localization by imaging with explicit B0 field inhomogeneity compensation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2007; 26:990-1000. [PMID: 17649912 DOI: 10.1109/tmi.2007.897385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Magnetic resonance spectroscopy imaging (MRSI) is an attractive tool for medical imaging. However, its practical use is often limited by the intrinsic low spatial resolution and long acquisition time. Spectral localization by imaging (SLIM) has been proposed as a non-Fourier reconstruction algorithm that incorporates spatial a priori information about spectroscopically uniform compartments. Unfortunately, the influence of the magnetic field inhomogeneity--in particular, the susceptibility effects at tissues' boundaries--undermines the validity of the compartmental model. Therefore, we propose BSLIM as an extension of SLIM with field inhomogeneity compensation. A B0-field inhomogeneity map, which can be acquired rapidly and at high resolution, is used by the new algorithm as additional a priori information. We show that the proposed method is distinct from the generalized SLIM (GSLIM) framework. Experimental results of a two-compartment phantom demonstrate the feasibility of the method and the importance of inhomogeneity compensation.
Collapse
|
11
|
Molecular magnetic resonance imaging. Biomed Imaging Interv J 2006; 2:e8. [PMID: 21614236 PMCID: PMC3097616 DOI: 10.2349/biij.2.2.e8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 12/12/2005] [Accepted: 12/21/2005] [Indexed: 11/17/2022] Open
Abstract
Molecular MRI (mMRI) is a special implementation of Molecular Imaging for the non-invasive visualisation of biological processes at the cellular and molecular level. More specifically, mMRI comprises the contrast agent-mediated alteration of tissue relaxation times for the detection and localisation of molecular disease markers (such as cell surface receptors, enzymes or signaling molecules), cells (e.g. lymphocytes, stem cells) or therapeutic drugs (e.g. liposomes, viral particles). MRI yields topographical, anatomical maps; functional MRI (fMRI) provides rendering of physiologic functions and magnetic resonance spectroscopy (MRS) reveals the distribution patterns of some specific metabolites. mMRI provides an additional level of information at the molecular or cellular level, thus extending MRI further beyond the anatomical and physiological level. These advances brought by mMRI are mandatory for MRI to be competitive in the age of molecular medicine. mMRI is already today increasingly used for research purposes, e.g. to facilitate the examination of cell migration, angiogenesis, apoptosis or gene expression in living organisms. In medical diagnostics, mMRI will pave the way toward a significant improvement in early detection of disease, therapy planning or monitoring of outcome and will therefore bring significant improvement in the medical treatment for patients.In general, Molecular Imaging demands high sensitivity equipment, capable of quantitative measurements to detect probes that interact with targets at the pico- or nanomolar level. The challenge to detect such sparse targets can be exemplified with cell surface receptors, a common target for molecular imaging. At high expression levels (bigger than 106 per cell) the receptor concentration is approx. 10(15) per ml, i.e. the concentration is in the micromole range. Many targets, however, are expressed in even considerably lower concentrations. Therefore the most sensitive modalities, namely nuclear imaging (PET and SPECT) have always been at the forefront of Molecular Imaging, and many nuclear probes in clinical use today are already designed to detect molecular mechanisms (such as FDG, detecting high glucose metabolism). In recent years however, Molecular Imaging has commanded attention from beyond the field of nuclear medicine. Further imaging modalities to be considered for molecular imaging primarily include optical imaging, MRI and ultrasound.
Collapse
|