1
|
Nasiri H, Abbasian K. Surface plasmon resonance detection of anti-cancer drug flutamide by graphitic carbon nitride/chitosan nanocomposite. Sci Rep 2025; 15:2278. [PMID: 39833231 PMCID: PMC11747246 DOI: 10.1038/s41598-025-86665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The g-C3N4/CS biosensor was designed, fabricated, and tested using compounds such as glucose, urine, lactose, and flutamide at a molarity of 10 µM, which could demonstrate a high sensitivity of 200 μm-1 for flutamide. Powerful effective medium theory and FDTD simulation were used to predict the most favorable mode and plasmonic properties of a graphite carbon nitride and chitosan nanocomposite. The research also explores the characteristics of surface plasmon resonance exhibited by the nanocomposite as the chitosan content is adjusted. Subsequent simulations are conducted on nanocomposites incorporating a thin layer and a modified gold structure. The intricate simulations ultimately reveal the optimal combination, tested under three different pH conditions (6.2, 7.2, and 8). In acidic conditions, the kinetic profile yielded a KD= 3.45 × 10-7, surpassing the KD value of a thin film. The Au significantly outperformed the alternative material. The biosensor demonstrated linear behavior across a wide concentration range from 1 to 150 µM, achieving a detection limit of 120 nM with its high sensitivity.
Collapse
Affiliation(s)
- Hassan Nasiri
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
| | - Karim Abbasian
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
2
|
Xie J, Li XD, Li M, Zhu HY, Cao Y, Zhang J, Xu AJ. Advances in surface plasmon resonance for analyzing active components in traditional Chinese medicine. J Pharm Anal 2024; 14:100983. [PMID: 39411582 PMCID: PMC11474370 DOI: 10.1016/j.jpha.2024.100983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 10/19/2024] Open
Abstract
The surface plasmon resonance (SPR) biosensor technology is a novel optical analysis method for studying intermolecular interactions. Owing to in-depth research on traditional Chinese medicine (TCM) in recent years, comprehensive and specific identification of components and target interactions has become key yet difficult tasks. SPR has gradually been used to analyze the active components of TCM owing to its high sensitivity, strong exclusivity, large flux, and real-time monitoring capabilities. This review sought to briefly introduce the active components of TCM and the principle of SPR, and provide historical and new insights into the application of SPR in the analysis of the active components of TCM.
Collapse
Affiliation(s)
- Jing Xie
- Faculty of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xian-Deng Li
- Faculty of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Mi Li
- Faculty of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hong-Yan Zhu
- Faculty of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yan Cao
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jian Zhang
- Faculty of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - A-Jing Xu
- Faculty of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
3
|
Lortlar Ünlü N, Bakhshpour-Yucel M, Chiodi E, Diken-Gür S, Emre S, Ünlü MS. Characterization of Receptor Binding Affinity for Vascular Endothelial Growth Factor with Interferometric Imaging Sensor. BIOSENSORS 2024; 14:315. [PMID: 39056591 PMCID: PMC11274412 DOI: 10.3390/bios14070315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
Wet Age-related macular degeneration (AMD) is the leading cause of vision loss in industrialized nations, often resulting in blindness. Biologics, therapeutic agents derived from biological sources, have been effective in AMD, albeit at a high cost. Due to the high cost of AMD treatment, it is critical to determine the binding affinity of biologics to ensure their efficacy and make quantitative comparisons between different drugs. This study evaluates the in vitro VEGF binding affinity of two drugs used for treating wet AMD, monoclonal antibody-based bevacizumab and fusion protein-based aflibercept, performing quantitative binding measurements on an Interferometric Reflectance Imaging Sensor (IRIS) system. Both biologics can inhibit Vascular Endothelial Growth Factor (VEGF). For comparison, the therapeutic molecules were immobilized on to the same support in a microarray format, and their real-time binding interactions with recombinant human VEGF (rhVEGF) were measured using an IRIS. The results indicated that aflibercept exhibited a higher binding affinity to VEGF than bevacizumab, consistent with previous studies using ELISA and SPR. The IRIS system's innovative and cost-effective features, such as silicon-based semiconductor chips for enhanced signal detection and multiplexed analysis capability, offer new prospects in sensor technologies. These attributes make IRISs a promising tool for future applications in the development of therapeutic agents, specifically biologics.
Collapse
Affiliation(s)
- Nese Lortlar Ünlü
- Faculty of Medicine, Histology and Embryology, Atlas University, 34408 İstanbul, Turkey
- Photonics Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Monireh Bakhshpour-Yucel
- Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, 16059 Bursa, Turkey;
- Photonics Center, Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (E.C.); (S.D.-G.)
| | - Elisa Chiodi
- Photonics Center, Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (E.C.); (S.D.-G.)
| | - Sinem Diken-Gür
- Photonics Center, Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (E.C.); (S.D.-G.)
- Department of Biology, Hacettepe University, 06800 Ankara, Turkey
| | - Sinan Emre
- Batigoz Eye Health Branch Center, 35210 Izmir, Turkey;
| | - M. Selim Ünlü
- Photonics Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
- Photonics Center, Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (E.C.); (S.D.-G.)
| |
Collapse
|
4
|
Shen Y, Zhu Q, Chen Z, Wu J, Chen B, Dai E, Pan W. Lossy Mode Resonance Sensors Based on Anisotropic Few-Layer Black Phosphorus. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:736. [PMID: 38727330 PMCID: PMC11085111 DOI: 10.3390/nano14090736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Lossy mode resonance (LMR) sensors offer a promising avenue to surpass the constraints of conventional surface plasmon resonance (SPR) sensors by delivering enhanced label-free detection capabilities. A notable edge of LMR over SPR is its excitation potential by both transverse electric (TE) and transverse magnetic (TM) polarized light. Yet this merit remains underexplored due to challenges to achieving high sensing performance under both TM and TE polarization within a singular LMR model. This study introduces a theoretical model for an LMR prism refractive index sensor based on a MgF2-few layer black phosphorus-MgF2 configuration, which can achieve angular sensitivity nearing 90° refractive index unit-1 (RIU-1) for both polarizations. Leveraging the distinct anisotropic nature of black phosphorus, the figure of merit (FOM) values along its two principal crystal axes (zigzag and armchair) show great difference, achieving an impressive FOM of 1.178 × 106 RIU-1 along the zigzag direction under TE polarized light and 1.231 × 104 RIU-1 along the armchair direction under TM polarized light. We also provide an analysis of the electric field distribution for each configuration at its respective resonant conditions. The proposed structure paves the way for innovative applications of anisotropic-material-based LMR sensors in various applications.
Collapse
|
5
|
Cho Y, Lee W, Sin H, Oh S, Choi KC, Jun JH. Non-Invasive Alcohol Concentration Measurement Using a Spectroscopic Module: Outlook for the Development of a Drunk Driving Prevention System. SENSORS (BASEL, SWITZERLAND) 2024; 24:2252. [PMID: 38610464 PMCID: PMC11014244 DOI: 10.3390/s24072252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 04/14/2024]
Abstract
Alcohol acts as a central nervous system depressant and falls under the category of psychoactive drugs. It has the potential to impair vital bodily functions, including cognitive alertness, muscle coordination, and induce fatigue. Taking the wheel after consuming alcohol can lead to delayed responses in emergency situations and increases the likelihood of collisions with obstacles or suddenly appearing objects. Statistically, drivers under the influence of alcohol are seven times more likely to cause accidents compared to sober individuals. Various techniques and methods for alcohol measurement have been developed. The widely used breathalyzer, which requires direct contact with the mouth, raises concerns about hygiene. Methods like chromatography require skilled examiners, while semiconductor sensors exhibit instability in sensitivity over measurement time and has a short lifespan, posing structural challenges. Non-dispersive infrared analyzers face structural limitations, and in-vehicle air detection methods are susceptible to external influences, necessitating periodic calibration. Despite existing research and technologies, there remain several limitations, including sensitivity to external factors such as temperature, humidity, hygiene consideration, and the requirement for periodic calibration. Hence, there is a demand for a novel technology that can address these shortcomings. This study delved into the near-infrared wavelength range to investigate optimal wavelengths for non-invasively measuring blood alcohol concentration. Furthermore, we conducted an analysis of the optical characteristics of biological substances, integrated these data into a mathematical model, and demonstrated that alcohol concentration can be accurately sensed using the first-order modeling equation at the optimal wavelength. The goal is to minimize user infection and hygiene issues through a non-destructive and non-invasive method, while applying a compact spectrometer sensor suitable for button-type ignition devices in vehicles. Anticipated applications of this study encompass diverse industrial sectors, including the development of non-invasive ignition button-based alcohol prevention systems, surgeon's alcohol consumption status in the operating room, screening heavy equipment operators for alcohol use, and detecting alcohol use in close proximity to hazardous machinery within factories.
Collapse
Affiliation(s)
- Yechan Cho
- Department of Biomedical Engineering, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Republic of Korea; (Y.C.); (W.L.); (H.S.); (S.O.)
| | - Wonjune Lee
- Department of Biomedical Engineering, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Republic of Korea; (Y.C.); (W.L.); (H.S.); (S.O.)
| | - Heock Sin
- Department of Biomedical Engineering, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Republic of Korea; (Y.C.); (W.L.); (H.S.); (S.O.)
| | - Suseong Oh
- Department of Biomedical Engineering, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Republic of Korea; (Y.C.); (W.L.); (H.S.); (S.O.)
| | - Kyo Chang Choi
- Road Innovation Technology, Jincheon-gun 27856, Chungcheongbuk-do, Republic of Korea;
| | - Jae-Hoon Jun
- Department of Biomedical Engineering, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Republic of Korea; (Y.C.); (W.L.); (H.S.); (S.O.)
- Research Institute of Biomedical Engineering, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
6
|
Pitruzzella R, Rovida R, Perri C, Chiodi A, Arcadio F, Cennamo N, Pasquardini L, Vanzetti L, Fedrizzi M, Zeni L, D'Agostino G. Polymer Doping as a Novel Approach to Improve the Performance of Plasmonic Plastic Optical Fibers Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:5548. [PMID: 37420716 DOI: 10.3390/s23125548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
In this work, Fe2O3 was investigated as a doping agent for poly(methyl methacrylate) (PMMA) in order to enhance the plasmonic effect in sensors based on D-shaped plastic optical fibers (POFs). The doping procedure consists of immerging a premanufactured POF sensor chip in an iron (III) solution, avoiding repolymerization and its related disadvantages. After treatment, a sputtering process was used to deposit a gold nanofilm on the doped PMMA in order to obtain the surface plasmon resonance (SPR). More specifically, the doping procedure increases the refractive index of the POF's PMMA in contact with the gold nanofilm, improving the SPR phenomena. The doping of the PMMA was characterized by different analyses in order to determine the effectiveness of the doping procedure. Moreover, experimental results obtained by exploiting different water-glycerin solutions have been used to test the different SPR responses. The achieved bulk sensitivities confirmed the improvement of the plasmonic phenomenon with respect to a similar sensor configuration based on a not-doped PMMA SPR-POF chip. Finally, doped and non-doped SPR-POF platforms were functionalized with a molecularly imprinted polymer (MIP), specific for the bovine serum albumin (BSA) detection, to obtain dose-response curves. These experimental results confirmed an increase in binding sensitivity for the doped PMMA sensor. Therefore, a lower limit of detection (LOD), equal to 0.04 μM, has been obtained in the case of the doped PMMA sensor when compared to the one calculated for the not-doped sensor configuration equal to about 0.09 μM.
Collapse
Affiliation(s)
- Rosalba Pitruzzella
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy
| | - Riccardo Rovida
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy
- Moresense SRL, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | - Chiara Perri
- Moresense SRL, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | - Alessandro Chiodi
- Moresense SRL, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | - Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy
- Moresense SRL, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy
- Moresense SRL, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | | | - Lia Vanzetti
- Bruno Kessler Foundation, Center for Sensors and Devices, Via Sommarive 18, 38123 Trento, Italy
| | - Michele Fedrizzi
- Bruno Kessler Foundation, Center for Sensors and Devices, Via Sommarive 18, 38123 Trento, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy
| | | |
Collapse
|
7
|
Zhang W, Lang X, Liu X, Li G, Singh R, Zhang B, Kumar S. Advances in Tapered Optical Fiber Sensor Structures: From Conventional to Novel and Emerging. BIOSENSORS 2023; 13:644. [PMID: 37367009 DOI: 10.3390/bios13060644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Optical fiber sensors based on tapered optical fiber (TOF) structure have attracted a considerable amount of attention from researchers due to the advantages of simple fabrication, high stability, and diverse structures, and have great potential for applications in many fields such as physics, chemistry, and biology. Compared with conventional optical fibers, TOF with their unique structural characteristics significantly improves the sensitivity and response speed of fiber-optic sensors and broadens the application range. This review presents an overview of the latest research status and characteristics of fiber-optic sensors and TOF sensors. Then, the working principle of TOF sensors, fabrication schemes of TOF structures, novel TOF structures in recent years, and the growing emerging application areas are described. Finally, the development trends and challenges of TOF sensors are prospected. The objective of this review is to convey novel perspectives and strategies for the performance optimization and design of TOF sensors based on fiber-optic sensing technologies.
Collapse
Affiliation(s)
- Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xianzheng Lang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
8
|
Zhao R, Feng Y, Ling H, Zou X, Wang M, Lu G. Enhanced Terahertz Fingerprint Sensing Mechanism Study of Tiny Molecules Based on Tunable Spoof Surface Plasmon Polaritons on Composite Periodic Groove Structures. SENSORS (BASEL, SWITZERLAND) 2023; 23:2496. [PMID: 36904706 PMCID: PMC10007521 DOI: 10.3390/s23052496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Highly sensitive detection of enhanced terahertz (THz) fingerprint absorption spectrum of trace-amount tiny molecules is essential for biosensing. THz surface plasmon resonance (SPR) sensors based on Otto prism-coupled attenuated total reflection (OPC-ATR) configuration have been recognized as a promising technology in biomedical detection applications. However, THz-SPR sensors based on the traditional OPC-ATR configuration have long been associated with low sensitivity, poor tunability, low refractive index resolution, large sample consumption, and lack of fingerprint analysis. Here, we propose an enhanced tunable high-sensitivity and trace-amount THz-SPR biosensor based on a composite periodic groove structure (CPGS). The elaborate geometric design of the spoof surface plasmon polaritons (SSPPs) metasurface increases the number of electromagnetic hot spots on the surface of the CPGS, improves the near-field enhancement effect of SSPPs, and enhances the interaction between THz wave and the sample. The results show that the sensitivity (S), figure of merit (FOM) and Q-factor (Q) can be increased to 6.55 THz/RIU, 4234.06 1/RIU and 629.28, respectively, when the refractive index range of the sample to measure is between 1 and 1.05 with the resolution 1.54×10-5 RIU. Moreover, by making use of the high structural tunability of CPGS, the best sensitivity (SPR frequency shift) can be obtained when the resonant frequency of the metamaterial approaches the biological molecule oscillation. These advantages make CPGS a strong candidate for the high-sensitivity detection of trace-amount biochemical samples.
Collapse
Affiliation(s)
- Ruiqi Zhao
- Shandong Key Laboratory of Low-Altitude Airspace Surveillance Network Technology, QILU Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Jinan 250132, China
| | - Yu Feng
- Shandong Key Laboratory of Low-Altitude Airspace Surveillance Network Technology, QILU Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Jinan 250132, China
| | - Haotian Ling
- Shandong Key Laboratory of Low-Altitude Airspace Surveillance Network Technology, QILU Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Jinan 250132, China
| | - Xudong Zou
- Shandong Key Laboratory of Low-Altitude Airspace Surveillance Network Technology, QILU Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Jinan 250132, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Meng Wang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Guizhen Lu
- State Key Laboratory of Media Convergence and Communication, Communication University of China (CUC), Beijing 100039, China
| |
Collapse
|
9
|
Vitoria I, Gallego EE, Melendi-Espina S, Hernaez M, Ruiz Zamarreño C, Matías IR. Gas Sensor Based on Lossy Mode Resonances by Means of Thin Graphene Oxide Films Fabricated onto Planar Coverslips. SENSORS (BASEL, SWITZERLAND) 2023; 23:1459. [PMID: 36772491 PMCID: PMC9920069 DOI: 10.3390/s23031459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The use of planar waveguides has recently shown great success in the field of optical sensors based on the Lossy Mode Resonance (LMR) phenomenon. The properties of Graphene Oxide (GO) have been widely exploited in various sectors of science and technology, with promising results for gas sensing applications. This work combines both, the LMR-based sensing technology on planar waveguides and the use of a GO thin film as a sensitive coating, to monitor ethanol, water, and acetone. Experimental results on the fabrication and performance of the sensor are presented. The obtained results showed a sensitivity of 3.1, 2.0, and 0.6 pm/ppm for ethanol, water, and acetone respectively, with a linearity factor R2 > 0.95 in all cases.
Collapse
Affiliation(s)
- Ignacio Vitoria
- Electrical, Electronic and Communications Engineering Department, Public University of Navarre, 31006 Pamplona, Spain
- Institute of Smart Cities, Jeronimo de Ayanz Building, 31006 Pamplona, Spain
| | - Elieser E. Gallego
- Electrical, Electronic and Communications Engineering Department, Public University of Navarre, 31006 Pamplona, Spain
- Telecommunications and Electronic Department, University of Pinar del Río, Pinar del Río 20100, Cuba
| | - Sonia Melendi-Espina
- School of Engineering, University of East Anglia (UEA), Norwich Research Park, Norwich NR4 7TJ, UK
| | - Miguel Hernaez
- School of Engineering, University of East Anglia (UEA), Norwich Research Park, Norwich NR4 7TJ, UK
| | - Carlos Ruiz Zamarreño
- Electrical, Electronic and Communications Engineering Department, Public University of Navarre, 31006 Pamplona, Spain
- Institute of Smart Cities, Jeronimo de Ayanz Building, 31006 Pamplona, Spain
| | - Ignacio R. Matías
- Electrical, Electronic and Communications Engineering Department, Public University of Navarre, 31006 Pamplona, Spain
- Institute of Smart Cities, Jeronimo de Ayanz Building, 31006 Pamplona, Spain
| |
Collapse
|
10
|
Kaur B, Kumar S, Kaushik BK. Novel Wearable Optical Sensors for Vital Health Monitoring Systems-A Review. BIOSENSORS 2023; 13:bios13020181. [PMID: 36831947 PMCID: PMC9954035 DOI: 10.3390/bios13020181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 05/09/2023]
Abstract
Wearable sensors are pioneering devices to monitor health issues that allow the constant monitoring of physical and biological parameters. The immunity towards electromagnetic interference, miniaturization, detection of nano-volumes, integration with fiber, high sensitivity, low cost, usable in harsh environments and corrosion-resistant have made optical wearable sensor an emerging sensing technology in the recent year. This review presents the progress made in the development of novel wearable optical sensors for vital health monitoring systems. The details of different substrates, sensing platforms, and biofluids used for the detection of target molecules are discussed in detail. Wearable technologies could increase the quality of health monitoring systems at a nominal cost and enable continuous and early disease diagnosis. Various optical sensing principles, including surface-enhanced Raman scattering, colorimetric, fluorescence, plasmonic, photoplethysmography, and interferometric-based sensors, are discussed in detail for health monitoring applications. The performance of optical wearable sensors utilizing two-dimensional materials is also discussed. Future challenges associated with the development of optical wearable sensors for point-of-care applications and clinical diagnosis have been thoroughly discussed.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
- Correspondence: (S.K.); (B.K.K.)
| | - Brajesh Kumar Kaushik
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (S.K.); (B.K.K.)
| |
Collapse
|
11
|
Kumar S, Wang Z, Zhang W, Liu X, Li M, Li G, Zhang B, Singh R. Optically Active Nanomaterials and Its Biosensing Applications-A Review. BIOSENSORS 2023; 13:85. [PMID: 36671920 PMCID: PMC9855722 DOI: 10.3390/bios13010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 05/17/2023]
Abstract
This article discusses optically active nanomaterials and their optical biosensing applications. In addition to enhancing their sensitivity, these nanomaterials also increase their biocompatibility. For this reason, nanomaterials, particularly those based on their chemical compositions, such as carbon-based nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, and composite-based nanomaterials for biosensing applications are investigated thoroughly. These nanomaterials are used extensively in the field of fiber optic biosensing to improve response time, detection limit, and nature of specificity. Consequently, this article describes contemporary and application-based research that will be of great use to researchers in the nanomaterial-based optical sensing field. The difficulties encountered during the synthesis, characterization, and application of nanomaterials are also enumerated, and their future prospects are outlined for the reader's benefit.
Collapse
Affiliation(s)
- Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Zhi Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
12
|
Pandey PS, Raghuwanshi SK, Shadab A, Ansari MTI, Tiwari UK, Kumar S. SPR Based Biosensing Chip for COVID-19 Diagnosis-A Review. IEEE SENSORS JOURNAL 2022; 22:13800-13810. [PMID: 36346093 PMCID: PMC9423036 DOI: 10.1109/jsen.2022.3181423] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
Surface Plasmon Resonance (SPR) techniques are highly accurate in detecting biomolecular like blood group measurement, food adulteration, milk adulteration and recently developing as a rapid detection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In order to validate the clinical diagnosis, Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swabs has been utilized, which is time consuming and expensive. For fast and accurate detection of the SARS-CoV-2 virus, SPR based biosensing chips are described in this review article. SPR sensors have the potential to be employed for fast, accurate, and portable SARS-CoV-2 virus diagnosis. To combat the SARS-CoV-2 pandemic, there is considerable interest in creating innovative biosensors that are quick, reliable, and sensitive for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Purnendu Shekhar Pandey
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Sanjeev Kumar Raghuwanshi
- Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Azhar Shadab
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Md Tauseef Iqbal Ansari
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Umesh Kumar Tiwari
- Advanced Materials and Sensors DivisionCentral Scientific Instruments Organisation (CSIO) Chandigarh 160030 India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information TechnologyLiaocheng University Liaocheng 252059 China
| |
Collapse
|
13
|
Szymanska B, Lukaszewski Z, Oldak L, Zelazowska-Rutkowska B, Hermanowicz-Szamatowicz K, Gorodkiewicz E. Two Biosensors for the Determination of Interleukin-6 in Blood Plasma by Array SPRi. BIOSENSORS 2022; 12:bios12060412. [PMID: 35735559 PMCID: PMC9221503 DOI: 10.3390/bios12060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 12/05/2022]
Abstract
Interleukin-6 (IL-6) is a biomarker of inflammation, the advanced stage of COVID-19, and several cancers, including ovarian cancer. Two biosensors for the determination of IL-6 in blood plasma by array SPRi have been developed. One of these biosensors consists of the mouse monoclonal anti-IL-6 antibody as the receptor immobilized via the cysteamine linker. The second contains galiellalactone as the receptor, being an inhibitor specific for IL-6, immobilized via octadecanethiol (ODM) as the linker. Both biosensors are specific for IL-6. The biosensor with the antibody as the receptor gives a linear analytical response between 3 (LOQ) and 20 pg mL−1 and has a precision between 8% and 9.8% and recovery between 97% and 107%, depending on the IL-6 concentration. The biosensor with galiellalactone as the receptor gives a linear analytical response between 1.1 (LOQ) and 20 pg mL−1, and has a precision between 3.5% and 9.3% and recovery between 101% and 105%, depending on IL-6 concentration. Both biosensors were validated. Changes in IL-6 concentration in blood plasma before and after resection of ovarian tumor and endometrial cyst, as determined by the two developed biosensors, are given as an example of a real clinical application.
Collapse
Affiliation(s)
- Beata Szymanska
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (B.S.); (L.O.)
| | - Zenon Lukaszewski
- Faculty of Chemical Technology, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
- Correspondence: (Z.L.); (E.G.)
| | - Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (B.S.); (L.O.)
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Beata Zelazowska-Rutkowska
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | | | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (B.S.); (L.O.)
- Correspondence: (Z.L.); (E.G.)
| |
Collapse
|
14
|
An Off-Site Construction Digital Twin Assessment Framework Using Wood Panelized Construction as a Case Study. BUILDINGS 2022. [DOI: 10.3390/buildings12050566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Off-site construction is an innovative type of construction with the philosophy of standardizing the process and deploying the latest technological enablers. Many technologies, such as the Building Information Model (BIM), Internet of Things (IoT), etc., are concerned with virtual representation and manipulation of the physical site. However, a holistic view of the off-site construction processes is lacking in the exploration of the technological advances, resulting in inconsistency when applying these advances in practice. The concept of Digital Twin is useful for addressing this challenge. Digital Twin is a philosophy and a collection of technologies aimed toward seamless physical and virtual connections. Therefore, a holistic Off-site Construction Digital Twin model is necessary for any research concerning this topic, and an assessment framework is useful in helping off-site construction industry companies in approaching systematic Digital Twin. This research first proposes a model for Off-site Construction Digital Twin. To quantify this model, an assessment tool named Off-site Construction Digital Twin Maturity Level is proposed. The validation and evaluation of this assessment framework are conducted through a case study with ACQBuilt, an off-site construction company in Edmonton, Canada. The resulting assessment framework contributes to the body of knowledge in two ways: Firstly, it sets the foundation for an Off-site Construction Digital Twin, which is anticipated to significantly reduce waste and to improve efficiency. Secondly, it enables easier technology application in practice by offering a holistic Digital Twin framework.
Collapse
|