1
|
Wang S, Gao S, Tang C, Occhipinti E, Li C, Wang S, Wang J, Zhao H, Hu G, Nathan A, Dahiya R, Occhipinti LG. Memristor-based adaptive neuromorphic perception in unstructured environments. Nat Commun 2024; 15:4671. [PMID: 38821961 PMCID: PMC11143376 DOI: 10.1038/s41467-024-48908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/16/2024] [Indexed: 06/02/2024] Open
Abstract
Efficient operation of control systems in robotics or autonomous driving targeting real-world navigation scenarios requires perception methods that allow them to understand and adapt to unstructured environments with good accuracy, adaptation, and generality, similar to humans. To address this need, we present a memristor-based differential neuromorphic computing, perceptual signal processing, and online adaptation method providing neuromorphic style adaptation to external sensory stimuli. The adaptation ability and generality of this method are confirmed in two application scenarios: object grasping and autonomous driving. In the former, a robot hand realizes safe and stable grasping through fast ( ~ 1 ms) adaptation based on the tactile object features with a single memristor. In the latter, decision-making information of 10 unstructured environments in autonomous driving is extracted with an accuracy of 94% with a 40×25 memristor array. By mimicking human low-level perception mechanisms, the electronic neuromorphic circuit-based method achieves real-time adaptation and high-level reactions to unstructured environments.
Collapse
Affiliation(s)
- Shengbo Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Shuo Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Chenyu Tang
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Edoardo Occhipinti
- UKRI Centre for Doctoral Training in AI for Healthcare, Department of Computing, Imperial College London, London, UK
| | - Cong Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Shurui Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Jiaqi Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Hubin Zhao
- HUB of Intelligent Neuro-engineering (HUBIN), CREATe, Division of Surgery and Interventional Science, UCL, HA7 4LP, Stanmore, UK
| | - Guohua Hu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong S. A. R., China
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge, UK
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ravinder Dahiya
- Bendable Electronics and Sustainable Technologies (BEST) Group, Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | | |
Collapse
|
2
|
Lu J, Huang Z, Zhuang B, Cheng Z, Guo J, Lou H. Development and evaluation of a robotic system for lumbar puncture and epidural steroid injection. Front Neurorobot 2023; 17:1253761. [PMID: 37881516 PMCID: PMC10595035 DOI: 10.3389/fnbot.2023.1253761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Lumbar puncture is an important medical procedure for various diagnostics and therapies, but it can be hazardous due to individual variances in subcutaneous soft tissue, especially in the elderly and obese. Our research describes a novel robot-assisted puncture system that automatically controls and maintains the probe at the target tissue layer through a process of tissue recognition. Methods The system comprises a robotic system and a master computer. The robotic system is constructed based on a probe consisting of a pair of concentric electrodes. From the probe, impedance spectroscopy measures bio-impedance signals and transforms them into spectra that are communicated to the master computer. The master computer uses a Bayesian neural network to classify the bio-impedance spectra as corresponding to different soft tissues. By feeding the bio-impedance spectra of unknown tissues into the Bayesian neural network, we can determine their categories. Based on the recognition results, the master computer controls the motion of the robotic system. Results The proposed system is demonstrated on a realistic phantom made of ex vivo tissues to simulate the spinal environment. The findings indicate that the technology has the potential to increase the precision and security of lumbar punctures and associated procedures. Discussion In addition to lumbar puncture, the robotic system is suitable for related puncture operations such as discography, radiofrequency ablation, facet joint injection, and epidural steroid injection, as long as the required tissue recognition features are available. These operations can only be carried out once the puncture needle and additional instruments reach the target tissue layer, despite their ensuing processes being distinct.
Collapse
Affiliation(s)
- Jiaxin Lu
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Zekai Huang
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Baiyang Zhuang
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Zhuoqi Cheng
- The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Jing Guo
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Haifang Lou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
3
|
Cheng Z, Savarimuthu TR. Monopolar, bipolar, tripolar, and tetrapolar configurations in robot assisted electrical impedance scanning. Biomed Phys Eng Express 2022; 8. [PMID: 35728560 DOI: 10.1088/2057-1976/ac7adb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Tissue recognition is a critical process during a Robot-assisted minimally invasive surgery (RMIS) and it relies on the involvement of advanced sensing technology. APPROACH In this paper, the concept of Robot Assisted Electrical Impedance Sensing (RAEIS) is utilized and further developed aiming to sense the electrical bioimpedance of target tissue directly based on the existing robotic instruments and control strategy. Specifically, we present a new sensing configuration called pseudo-tetrapolar method. With the help of robotic control, we can achieve a similar configuration as traditional tetrapolar, and with better accuracy. MAIN RESULTS Five configurations including monopolar, bipolar, tripolar, tetrapolar and pseudo-tetrapolar are analyzed and compared through simulation experiments. Advantages and disadvantages of each configuration are thus discussed. SIGNIFICANCE This study investigates the measurement of tissue electrical property directly based on the existing robotic surgical instruments. Specifically, different sensing configurations can be realized through different connection and control strategies, making them suitable for different application scenarios.
Collapse
Affiliation(s)
- Zhuoqi Cheng
- MMMI, SDU, Campusvej 55, SDU, Odense, 5230, DENMARK
| | | |
Collapse
|
5
|
Gao A, Murphy RR, Chen W, Dagnino G, Fischer P, Gutierrez MG, Kundrat D, Nelson BJ, Shamsudhin N, Su H, Xia J, Zemmar A, Zhang D, Wang C, Yang GZ. Progress in robotics for combating infectious diseases. Sci Robot 2021; 6:6/52/eabf1462. [PMID: 34043552 DOI: 10.1126/scirobotics.abf1462] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022]
Abstract
The world was unprepared for the COVID-19 pandemic, and recovery is likely to be a long process. Robots have long been heralded to take on dangerous, dull, and dirty jobs, often in environments that are unsuitable for humans. Could robots be used to fight future pandemics? We review the fundamental requirements for robotics for infectious disease management and outline how robotic technologies can be used in different scenarios, including disease prevention and monitoring, clinical care, laboratory automation, logistics, and maintenance of socioeconomic activities. We also address some of the open challenges for developing advanced robots that are application oriented, reliable, safe, and rapidly deployable when needed. Last, we look at the ethical use of robots and call for globally sustained efforts in order for robots to be ready for future outbreaks.
Collapse
Affiliation(s)
- Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, 200240 Shanghai, China.,Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Robin R Murphy
- Humanitarian Robotics and AI Laboratory, Texas A&M University, College Station, TX, USA
| | - Weidong Chen
- Institute of Medical Robotics, Shanghai Jiao Tong University, 200240 Shanghai, China.,Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Giulio Dagnino
- Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK.,University of Twente, Enschede, Netherlands
| | - Peer Fischer
- Institute of Physical Chemistry, University of Stuttgart, Stuttgart, Germany.,Micro, Nano, and Molecular Systems Laboratory, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | | | - Dennis Kundrat
- Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
| | | | | | - Hao Su
- Biomechatronics and Intelligent Robotics Lab, Department of Mechanical Engineering, City University of New York, City College, New York, NY 10031, USA
| | - Jingen Xia
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China.,National Center for Respiratory Medicine, 100029 Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, 100029 Beijing, China.,National Clinical Research Center for Respiratory Diseases, 100029 Beijing, China
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Henan University School of Medicine, 7 Weiwu Road, 450000 Zhengzhou, China.,Department of Neurosurgery, University of Louisville, School of Medicine, 200 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Dandan Zhang
- Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China.,National Center for Respiratory Medicine, 100029 Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, 100029 Beijing, China.,National Clinical Research Center for Respiratory Diseases, 100029 Beijing, China.,Chinese Academy of Medical Sciences, Peking Union Medical College, 100730 Beijing, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, 200240 Shanghai, China.
| |
Collapse
|