1
|
Gao H, Lynch J, Gravish N. Soft Molds with Micro-Machined Internal Skeletons Improve Robustness of Flapping-Wing Robots. MICROMACHINES 2022; 13:1489. [PMID: 36144112 PMCID: PMC9502397 DOI: 10.3390/mi13091489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Mobile millimeter and centimeter scale robots often use smart composite manufacturing (SCM) for the construction of body components and mechanisms. The fabrication of SCM mechanisms requires laser machining and laminating flexible, adhesive, and structural materials into small-scale hinges, transmissions, and, ultimately, wings or legs. However, a fundamental limitation of SCM components is the plastic deformation and failure of flexures. In this work, we demonstrate that encasing SCM components in a soft silicone mold dramatically improves the durability of SCM flexure hinges and provides robustness to SCM components. We demonstrate this advance in the design of a flapping-wing robot that uses an underactuated compliant transmission fabricated with an inner SCM skeleton and exterior silicone mold. The transmission design is optimized to achieve desired wingstroke requirements and to allow for independent motion of each wing. We validate these design choices in bench-top tests, measuring transmission compliance, kinematics, and fatigue. We integrate the transmission with laminate wings and two types of actuation, demonstrating elastic energy exchange and limited lift-off capabilities. Lastly, we tested collision mitigation through flapping-wing experiments that obstructed the motion of a wing. These experiments demonstrate that an underactuated compliant transmission can provide resilience and robustness to flapping-wing robots.
Collapse
|
2
|
Visual-Inertial Cross Fusion: A Fast and Accurate State Estimation Framework for Micro Flapping Wing Rotors. DRONES 2022. [DOI: 10.3390/drones6040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Real-time and drift-free state estimation is essential for the flight control of Micro Aerial Vehicles (MAVs). Due to the vibration caused by the particular flapping motion and the stringent constraints of scale, weight, and power, state estimation divergence actually becomes an open challenge for flapping wing platforms’ longterm stable flight. Unlike conventional MAVs, the direct adoption of mature state estimation strategies, such as inertial or vision-based methods, has difficulty obtaining satisfactory sensing performance on flapping wing platforms. Inertial sensors offer high sampling frequency but suffer from flapping-introduced oscillation and drift. External visual sensors, such as motion capture systems, can provide accurate feedback but come with a relatively low sampling rate and severe delay. This work proposes a novel state estimation framework to combine the merits from both to address such key sensing challenges of a special flapping wing platform—micro flapping wing rotors (FWRs). In particular, a cross-fusion scheme, which integrates two alternately updated Extended Kalman Filters based on a convex combination, is proposed to tightly fuse both onboard inertial and external visual information. Such a design leverages both the high sampling rate of the inertial feedback and the accuracy of the external vision-based feedback. To address the sensing delay of the visual feedback, a ring buffer is designed to cache historical states for online drift compensation. Experimental validations have been conducted on two sophisticated microFWRs with different actuation and control principles. Both of them show realtime and drift-free state estimation.
Collapse
|
3
|
Longitudinal Mode System Identification of an Insect-like Tailless Flapping-Wing Micro Air Vehicle Using Onboard Sensors. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper, model parameter identification results are presented for a longitudinal mode dynamic model of an insect-like tailless flapping-wing micro air vehicle (FWMAV) using angle and angular rate data from onboard sensors only. A gray box model approach with indirect method was utilized with adaptive Gauss–Newton, Levenberg–Marquardt, and gradient search identification methods. Regular and low-frequency reference commands were mainly used for identification since they gave higher fit percentages than irregular and high-frequency reference commands. Dynamic parameters obtained using three identification methods with two different datasets were similar to each other, indicating that the obtained dynamic model was sufficiently reliable. Most of the identified dynamic model parameters had similar values to the computationally obtained ones, except stability derivatives for pitching moment with forward velocity and pitching rate variations. Differences were mainly due to certain neglected body, nonlinear dynamics, and the shift of the center of gravity. Fit percentage of the identified dynamic model (~49%) was more than two-fold higher than that of the computationally obtained one (~22%). Frequency domain analysis showed that the identified model was much different from that of the computationally obtained one in the frequency range of 0.3 rad/s to 5 rad/s, which affected transient responses. Both dynamic models showed that the phase margin was very low, and that it should be increased by a feedback controller to have a robustly stable system. The stable dominant pole of the identified model had a higher magnitude which resulted in faster responses. The identified dynamic model exhibited much closer responses to experimental flight data in pitching motion than the computationally obtained dynamic model, demonstrating that the identified dynamic model could be used for the design of more effective pitch angle-stabilizing controllers.
Collapse
|
4
|
Haider N, Shahzad A, Qadri MNM, Shams TA. Aerodynamic analysis of hummingbird-like hovering flight. BIOINSPIRATION & BIOMIMETICS 2021; 16:066018. [PMID: 34547732 DOI: 10.1088/1748-3190/ac28eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Flapping wing micro aerial vehicles are studied as the substitute for fixed and rotary wing micro aerial vehicles because of the advantages such as agility, maneuverability, and employability in confined environments. Hummingbird's sustainable hovering capability inspires many researchers to develop micro aerial vehicles with similar dynamics. In this research, a wing of a ruby-throated hummingbird is modeled as an insect wing using membrane and stiffeners. The effect of flexibility on the aerodynamic performance of a wing in hovering flight has been studied numerically by using a fluid-structure interaction scheme at a Reynolds number of 3000. Different wings have been developed by using different positions and thicknesses of the stiffeners. The chordwise and spanwise flexural stiffnesses of all the wings modeled in this work are comparable to insects of similar span and chord length. When the position of the stiffener is varied, the best-performing wing has an average lift coefficient of 0.51. Subsequently, the average lift coefficient is increased to 0.56 when the appropriate thickness of the stiffeners is chosen. The best flexible wing outperforms its rigid counterpart and produces lift and power economy comparable to a real hummingbird's wing. That is, the average lift coefficient and power economy of 0.56 and 0.88 for the best flexible wing as compared to 0.61 and 1.07 for the hummingbird's wing. It can be concluded that a simple manufacturable flexible wing design based on appropriate positioning and thickness of stiffeners can serve as a potential candidate for bio-inspired flapping-wing micro aerial vehicles.
Collapse
Affiliation(s)
- Naeem Haider
- Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aamer Shahzad
- Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Nafees Mumtaz Qadri
- Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Taimur Ali Shams
- Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
5
|
Tu Z, Hui C, Liu L, Zhou Y, Romano DR, Deng X. Crawl and Fly: A Bio-Inspired Robot Utilizing Unified Actuation for Hybrid Aerial-Terrestrial Locomotion. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3099246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Abstract
Abstract
In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored.
Graphic abstract
Collapse
|
7
|
Koizumi S, Nakata T, Liu H. Flexibility Effects of a Flapping Mechanism Inspired by Insect Musculoskeletal System on Flight Performance. Front Bioeng Biotechnol 2021; 9:612183. [PMID: 33968909 PMCID: PMC8100246 DOI: 10.3389/fbioe.2021.612183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
Flying animals such as insects display great flight performances with high stability and maneuverability even under unpredictable disturbances in natural and man-made environments. Unlike man-made mechanical systems like a drone, insects can achieve various flapping motions through their flexible musculoskeletal systems. However, it remains poorly understood whether flexibility affects flight performances or not. Here, we conducted an experimental study on the effects of the flexibility associated with the flapping mechanisms on aerodynamic performance with a flexible flapping mechanism (FFM) inspired by the flexible musculoskeletal system of insects. Based on wing kinematic and force measurements, we found an appropriate combination of the flexible components could improve the aerodynamic efficiency by increasing the wingbeat amplitude. Results of the wind tunnel experiments suggested that, through some passive adjustment of the wing kinematics in concert with the flexible mechanism, the disturbance-induced effects could be suppressed. Therefore, the flight stability under the disturbances is improved. While the FFM with the most rigid spring was least efficient in the static experiments, the model was most robust against the wind within the range of the study. Our results, particularly regarding the trade-off between the efficiency and the robustness, point out the importance of the passive response of the flapping mechanisms, which may provide a functional biomimetic design for the flapping micro air vehicles (MAVs) capable of achieving high efficiency and stability.
Collapse
Affiliation(s)
- Sakito Koizumi
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | | | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
A Modified Quasisteady Aerodynamic Model for a Sub-100 mg Insect-Inspired Flapping-Wing Robot. Appl Bionics Biomech 2021; 2020:8850036. [PMID: 33425006 PMCID: PMC7772018 DOI: 10.1155/2020/8850036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/09/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
This study proposes a modified quasisteady aerodynamic model for the sub-100-milligram insect-inspired flapping-wing robot presented by the authors in a previous paper. The model, which is based on blade-element theory, considers the aerodynamic mechanisms of circulation, dissipation, and added-mass, as well as the inertial effect. The aerodynamic force and moment acting on the wing are calculated based on the two-degree-of-freedom (2-DOF) wing kinematics of flapping and rotating. In order to validate the model, we used a binocular high-speed photography system and a customized lift measurement system to perform simultaneous measurements of the wing kinematics and the lift of the robot under different input voltages. The results of these measurements were all in close agreement with the estimates generated by the proposed model. In addition, based on the model, this study analyzes the 2-DOF flapping-wing dynamics of the robot and provides an estimate of the passive rotation—the main factor in generating lift—from the measured flapping kinematics. The analysis also reveals that the calculated rotating kinematics of the wing under different input voltages accord well with the measured rotating kinematics. We expect that the model presented here will be useful in developing a control strategy for our sub-100 mg insect-inspired flapping-wing robot.
Collapse
|
9
|
Phan HV, Park HC. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science 2020; 370:1214-1219. [DOI: 10.1126/science.abd3285] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/28/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Hoang Vu Phan
- Department of Smart Vehicle Engineering, Konkuk University, Seoul 05029, South Korea
- Artificial Muscle Research Center, Konkuk University, Seoul 05029, South Korea
| | - Hoon Cheol Park
- Department of Smart Vehicle Engineering, Konkuk University, Seoul 05029, South Korea
- Artificial Muscle Research Center, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
10
|
Tu Z, Fei F, Zhang J, Deng X. An At-Scale Tailless Flapping-Wing Hummingbird Robot. I. Design, Optimization, and Experimental Validation. IEEE T ROBOT 2020. [DOI: 10.1109/tro.2020.2993217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|