Zhang S, Yu N, Guo Z, Huo W, Han J. Single-Channel sEMG-Based Estimation of Knee Joint Angle Using a Decomposition Algorithm With a State-Space Model.
IEEE Trans Neural Syst Rehabil Eng 2023;
31:4703-4712. [PMID:
38015663 DOI:
10.1109/tnsre.2023.3336317]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Accurate human motion estimation is crucial for effective and safe human-robot interaction when using robotic devices for rehabilitation or performance enhancement. Although surface electromyography (sEMG) signals have been widely used to estimate human movements, conventional sEMG-based methods, which need sEMG signals measured from multiple relevant muscles, are usually subject to some limitations, including interference between sEMG sensors and wearable robots/environment, complicated calibration, as well as discomfort during long-term routine use. Few methods have been proposed to deal with these limitations by using single-channel sEMG (i.e., reducing the sEMG sensors as much as possible). The main challenge for developing single-channel sEMG-based estimation methods is that high estimation accuracy is difficult to be guaranteed. To address this problem, we proposed an sEMG-driven state-space model combined with an sEMG decomposition algorithm to improve the accuracy of knee joint movement estimation based on single-channel sEMG signals measured from gastrocnemius. The effectiveness of the method was evaluated via both single- and multi-speed walking experiments with seven and four healthy subjects, respectively. The results showed that the normal root-mean-squared error of the estimated knee joint angle using the method could be limited to 15%. Moreover, this method is robust with respect to variations in walking speeds. The estimation performance of this method was basically comparable to that of state-of-the-art studies using multi-channel sEMG.
Collapse