1
|
Greenspon CM, Shelchkova ND, Valle G, Hobbs TG, Berger-Wolf EI, Hutchison BC, Dogruoz E, Verbarschott C, Callier T, Sobinov AR, Okorokova EV, Jordan PM, Prasad D, He Q, Liu F, Kirsch RF, Miller JP, Lee RC, Satzer D, Gonzalez-Martinez J, Warnke PC, Miller LE, Boninger ML, Ajiboye AB, Graczyk EL, Downey JE, Collinger JL, Hatsopoulos NG, Gaunt RA, Bensmaia SJ. Tessellation of artificial touch via microstimulation of human somatosensory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.545425. [PMID: 37425877 PMCID: PMC10327055 DOI: 10.1101/2023.06.23.545425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
When we interact with objects, we rely on signals from the hand that convey information about the object and our interaction with it. A basic feature of these interactions, the locations of contacts between the hand and object, is often only available via the sense of touch. Information about locations of contact between a brain-controlled bionic hand and an object can be signaled via intracortical microstimulation (ICMS) of somatosensory cortex (S1), which evokes touch sensations that are localized to a specific patch of skin. To provide intuitive location information, tactile sensors on the robotic hand drive ICMS through electrodes that evoke sensations at skin locations matching sensor locations. This approach requires that ICMS-evoked sensations be focal, stable, and distributed over the hand. To systematically investigate the localization of ICMS-evoked sensations, we analyzed the projected fields (PFs) of ICMS-evoked sensations - their location and spatial extent - from reports obtained over multiple years from three participants implanted with microelectrode arrays in S1. First, we found that PFs vary widely in their size across electrodes, are highly stable within electrode, are distributed over large swaths of each participant's hand, and increase in size as the amplitude or frequency of ICMS increases. Second, while PF locations match the locations of the receptive fields (RFs) of the neurons near the stimulating electrode, PFs tend to be subsumed by the corresponding RFs. Third, multi-channel stimulation gives rise to a PF that reflects the conjunction of the PFs of the component channels. By stimulating through electrodes with largely overlapping PFs, then, we can evoke a sensation that is experienced primarily at the intersection of the component PFs. To assess the functional consequence of this phenomenon, we implemented multichannel ICMS-based feedback in a bionic hand and demonstrated that the resulting sensations are more localizable than are those evoked via single-channel ICMS.
Collapse
Affiliation(s)
- Charles M Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | | | - Giacomo Valle
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Taylor G Hobbs
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Ev I Berger-Wolf
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Brianna C Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Efe Dogruoz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Ceci Verbarschott
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
| | - Thierri Callier
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | | | - Patrick M Jordan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Dillan Prasad
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Qinpu He
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL
| | - Fang Liu
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Robert F Kirsch
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
- School of Medicine, Case Western Reserve University, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Jonathan P Miller
- School of Medicine, Case Western Reserve University, Cleveland, OH
- The Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Ray C Lee
- Schwab Rehabilitation Hospital, Chicago, IL
| | - David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, IL
| | | | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL
| | - Lee E Miller
- Department of Neuroscience, Northwestern University, Chicago, IL
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL
- Shirley Ryan Ability Lab, Chicago, IL
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Abidemi B Ajiboye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
- School of Medicine, Case Western Reserve University, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Emily L Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
- School of Medicine, Case Western Reserve University, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - John E Downey
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL
- Neuroscience Institute, University of Chicago, Chicago, IL
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL
- Neuroscience Institute, University of Chicago, Chicago, IL
| |
Collapse
|
3
|
Cabibihan JJ, Alhaddad AY, Gulrez T, Yoon WJ. Dataset for influence of visual and haptic feedback on the detection of threshold forces in a surgical grasping task. Data Brief 2022; 42:108045. [PMID: 35341034 PMCID: PMC8943423 DOI: 10.1016/j.dib.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
The data is related to minimal force thresholds perception in robotic surgical grasping applications. The experimental setup included an indenter-based haptic device acting on the fingertip of a participant and a visual system that displays grasping tasks by a surgical grasper. The experiments included the display of two presentations at different force levels (i.e., grasping and indentation) in three different modes, namely, visual-alone, haptic-alone, and bimodal (i.e., combined). For each mode, the participants were asked to identify which of the two presentations was higher. Each experiment was repeated till the termination conditions were met. Sixty participants took part in these experiments. The experiments were randomized and the threshold forces were calculated based on an algorthim. The datasets contain the individual responses of each participant, the threshold forces calculations, and the number of iterations.
Collapse
Affiliation(s)
- John-John Cabibihan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - Ahmad Yaser Alhaddad
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - Tauseef Gulrez
- Australian Public Service, Port Melbourne, Victoria, Australia
| | - W. Jong Yoon
- School of Science, Technology, Engineering, and Mathematics, University of Washington, Bothell, WA, USA
| |
Collapse
|