1
|
Nadzharyan TA, Kramarenko EY. The Effect of Particle-Matrix Interface on the Local Mechanical Properties of Filled Polymer Composites: Simulations and Theoretical Analysis. Polymers (Basel) 2025; 17:111. [PMID: 39795514 PMCID: PMC11723340 DOI: 10.3390/polym17010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
A finite element model of the local mechanical response of a filled polymer composite to uniaxial compression is presented. The interfacial layer between filler particles and polymer matrix is explicitly modeled as a third phase of the composite. Unit cells containing one or several anisometric filler particles surrounded by interface shells are considered. The dependence of the mechanical response of the cells to external deformation on the interface thickness and stiffness is studied. The use of the particle-matrix interface as a damping tool in mesoscopic polymer-composite problems with large deformations is discussed. The influence of the interface on the anisotropy of the composite response is considered.
Collapse
Affiliation(s)
- Timur A. Nadzharyan
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia;
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia
| | - Elena Yu. Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia;
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia
| |
Collapse
|
2
|
Guan Y, Yang L, Yang W, Zhang Q, Enock K, Liu Y, Zhang L, Chen H, Jian Y, Li Z, Xi Z, Kang Y, Zhang S. Electromagnetic-Driven Spider-Inspired Soft Robot Using Electroelastic Materials and Conductive Actuators. ACS OMEGA 2024; 9:48137-48148. [PMID: 39676940 PMCID: PMC11635678 DOI: 10.1021/acsomega.4c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 12/17/2024]
Abstract
Soft robots have developed gradually in the fields of portability, high precision, and low noise level due to their unique advantages of low noise and low energy consumption. This paper proposes an electromagnetically driven elastomer, using gelatin and glycerol (GG) as matrix materials and a mixture of multiwalled carbon nanotubes (MWCNTs) and Ag NWs (MA) as the conductive medium. Inchworm-inspired and spider-inspired soft robots have been developed, demonstrating fast movement speed, flexibility, and loading performance. The GG/MA elastomer with a 1:1.2 ratio shows a low elastic modulus and easy demolding. With a 1:1 mixing ratio of MWCNT and Ag NWs, the elastomer exhibits excellent conductivity, torsional stability, and fatigue resistance. The inchworm-inspired soft robot achieves an average speed of 3 mm/s, while supporting weights of grains and capsule at 2.5 and 2.3 mm/s, respectively. The spider-inspired soft robot demonstrates a maximum carrying capacity of 22 g, showcasing its load-bearing capabilities. Overall, the GG/MA elastomer-based soft robot exhibits exceptional flexibility, adaptability, and reliability, with potential in various fields such as goods transportation, safety monitoring, and disaster relief.
Collapse
Affiliation(s)
- Yanfang Guan
- School
of Electromechanical Engineering, Henan
University of Technology, Zhengzhou 450052, China
- Henan
Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450052, China
| | - Lin Yang
- School
of Electromechanical Engineering, Henan
University of Technology, Zhengzhou 450052, China
| | - Wei Yang
- School
of Electromechanical Engineering, Henan
University of Technology, Zhengzhou 450052, China
| | - Qingyuan Zhang
- School
of Electromechanical Engineering, Henan
University of Technology, Zhengzhou 450052, China
| | - Kasolo Enock
- School
of Electromechanical Engineering, Henan
University of Technology, Zhengzhou 450052, China
| | - Yansheng Liu
- School
of Electromechanical Engineering, Henan
University of Technology, Zhengzhou 450052, China
| | - Lin Zhang
- Department
of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Haiyong Chen
- Hanwei
Electronics Group Corporation,Zhengzhou, Henan 450001, China
| | - Yuhang Jian
- School
of Electromechanical Engineering, Henan
University of Technology, Zhengzhou 450052, China
| | - Zichen Li
- School
of Electromechanical Engineering, Henan
University of Technology, Zhengzhou 450052, China
| | - Zhengyang Xi
- School
of Electromechanical Engineering, Henan
University of Technology, Zhengzhou 450052, China
| | - Yuliang Kang
- School
of Electromechanical Engineering, Henan
University of Technology, Zhengzhou 450052, China
| | - ShuaiLong Zhang
- School
of Mechatronical Engineering, Beijing Institute
of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Feng C, Zhiqiang X, Kewen C, Xiaodong W, Shengqiang J. 3D Printed Magnetic Bionic Robot Inspired by Octopus for Drug Transportation. Soft Robot 2024; 11:1068-1077. [PMID: 39666699 DOI: 10.1089/soro.2023.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The octopus has attracted widespread attention owing to its unique underwater movement and its ability to escape with inkjets, which also promoted the development of underwater bionic robots. This study introduces a magnetic octopus robot (MOR) 3D printed with PA6/NdFeB composite material, which has good magnetic responsiveness and rigidity to cope with complex environments. The MOR can roll and rotate through complex terrain and passages because of its eight-claw structure. It also has amphibious locomotion and can pass through narrow gaps of 37.5% of its height by deformation. In addition, the MOR can not only clamp, transport, and release solids but also liquids by adding silicone hollow spheres, which indicates the potential of the MOR to be used in medical applications for transporting solid or liquid drugs. This research will help broaden the application prospects of magnetron robots in the field of medical drug transportation.
Collapse
Affiliation(s)
- Chen Feng
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Xu Zhiqiang
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Chen Kewen
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Wang Xiaodong
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| | - Jiang Shengqiang
- School of Mechanical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
4
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Jiang T, Zhang Y, Jiang J, Liu ZW, Liu ZT, Li G. UV Light-Mediated Hydrolytic Reaction to Develop Magnetic Hydrogel Actuators with Spatially Distributed Ferriferous Oxide Microparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308352. [PMID: 38433397 DOI: 10.1002/smll.202308352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Magnetic hydrogel actuators are developed by incorporating magnetic fillers into the hydrogel matrix. Regulating the distribution of these fillers is key to the exhibited functionalities but is still challenging. Here a facile way to spatially synthesize ferrosoferric oxide (Fe3O4) microparticles in situ in a thermal-responsive hydrogel is reported. This method involves the photo-reduction of Fe3+ ions coordinated with carboxylate groups in polymer chains, and the hydrolytic reaction of the reduced Fe2+ ions with residual Fe3+ ions. By controlling the irradiation time and position, the concentration of Fe3O4 microparticles can be spatially controlled, and the resulting Fe3O4 pattern enables the hydrogel to exhibit complex locomotion driven by magnet, temperature, and NIR light. This method is convenient and extendable to other hydrogel systems to realize more complicated magneto-responsive functionalities.
Collapse
Affiliation(s)
- Tongxin Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Yingying Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Jinqiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Zhao-Tie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| |
Collapse
|
6
|
Siebenmorgen C, Wang C, Navarro LB, Parisi D, Misra S, Venkiteswaran VK, van Rijn P. Minimally designed thermo-magnetic dual responsive soft robots for complex applications. J Mater Chem B 2024; 12:5339-5349. [PMID: 38597898 DOI: 10.1039/d3tb02839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The fabrication of thermo-magnetic dual-responsive soft robots often requires intricate designs to implement complex locomotion patterns and utilize the implemented responsive behaviors. This work demonstrates a minimally designed soft robot based on poly-N-isopropylacrylamide (pNIPAM) and ferromagnetic particles, showcasing excellent control over both thermo- and magnetic responses. Free radical polymerization enables the magnetic particles to be entrapped homogeneously within the polymeric network. The integration of magnetic shape programming and temperature response allows the robot to perform various tasks including shaping, locomotion, pick-and-place, and release maneuvers of objects using independent triggers. The robot can be immobilized in a gripping state through magnetic actuation, and a subsequent increase in temperature transitions the robot from a swollen to a collapsed state. The temperature switch enables the robot to maintain a secured configuration while executing other movements via magnetic actuation. This approach offers a straightforward yet effective solution for achieving full control over both stimuli in dual-responsive soft robotics.
Collapse
Affiliation(s)
- Clio Siebenmorgen
- University of Groningen, University Medical Center Groningen, Biomaterials & Biomedical Technology, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| | - Chen Wang
- University of Groningen, University Medical Center Groningen, Biomaterials & Biomedical Technology, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| | - Laurens Bosscher Navarro
- University of Groningen, University Medical Center Groningen, Biomaterials & Biomedical Technology, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| | - Daniele Parisi
- University of Groningen, Faculty of Science and Engineering, Product Technology - Engineering and Technology Institute Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sarthak Misra
- University of Groningen, University Medical Center Groningen, Biomaterials & Biomedical Technology, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
- Surgical Robotics Laboratory, Department of Biomechanical Engineering University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | | | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Biomaterials & Biomedical Technology, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
7
|
Liu Y, Huang J, Liu C, Song Z, Wu J, Zhao Q, Li Y, Dong F, Wang L, Xu H. Soft Millirobot Capable of Switching Motion Modes on the Fly for Targeted Drug Delivery in the Oviduct. ACS NANO 2024; 18:8694-8705. [PMID: 38466230 DOI: 10.1021/acsnano.3c09753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Small-scale magnetic robots with fixed magnetizations have limited locomotion modes, restricting their applications in complex environments in vivo. Here we present a morphology-reconfigurable millirobot that can switch the locomotion modes locally by reprogramming its magnetizations during navigation, in response to distinct magnetic field patterns. By continuously switching its locomotion modes between the high-velocity rigid motion and high-adaptability soft actuation, the millirobot efficiently navigates in small lumens with intricate internal structures and complex surface topographies. As demonstrations, the millirobot performs multimodal locomotion including woodlouse-like rolling and flipping, sperm-like rotating, and snake-like gliding to negotiate different terrains, including the unrestricted channel and high platform, narrow channel, and solid-liquid interface, respectively. Finally, we demonstrate the drug delivery capability of the millirobot through the oviduct-mimicking phantom and ex vivo oviduct. The magnetization reprogramming strategy during navigation represents a promising approach for developing self-adaptive robots for performing complex tasks in vivo.
Collapse
Affiliation(s)
- Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jing Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Chu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhongyi Song
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jiandong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Qilong Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yingtian Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Lei Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Haifeng Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
8
|
Bo Y, Wang H, Niu H, He X, Xue Q, Li Z, Yang H, Niu F. Advancements in materials, manufacturing, propulsion and localization: propelling soft robotics for medical applications. Front Bioeng Biotechnol 2024; 11:1327441. [PMID: 38260727 PMCID: PMC10800571 DOI: 10.3389/fbioe.2023.1327441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Soft robotics is an emerging field showing immense potential for biomedical applications. This review summarizes recent advancements in soft robotics for in vitro and in vivo medical contexts. Their inherent flexibility, adaptability, and biocompatibility enable diverse capabilities from surgical assistance to minimally invasive diagnosis and therapy. Intelligent stimuli-responsive materials and bioinspired designs are enhancing functionality while improving biocompatibility. Additive manufacturing techniques facilitate rapid prototyping and customization. Untethered chemical, biological, and wireless propulsion methods are overcoming previous constraints to access new sites. Meanwhile, advances in tracking modalities like computed tomography, fluorescence and ultrasound imaging enable precision localization and control enable in vivo applications. While still maturing, soft robotics promises more intelligent, less invasive technologies to improve patient care. Continuing research into biocompatibility, power supplies, biomimetics, and seamless localization will help translate soft robots into widespread clinical practice.
Collapse
Affiliation(s)
- Yunwen Bo
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haochen Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hui Niu
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyang He
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Quhao Xue
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zexi Li
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
9
|
Aner EA, Awad MI, Shehata OM. Performance evaluation of PSO-PID and PSO-FLC for continuum robot's developed modeling and control. Sci Rep 2024; 14:733. [PMID: 38184665 PMCID: PMC10771498 DOI: 10.1038/s41598-023-50551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Continuum robots are complex structures that require sophisticated modeling and control methods to achieve accurate position and motion tracking along desired trajectories. They are highly coupled, nonlinear systems with multiple degrees of freedom that pose a significant challenge for conventional approaches. In this paper, we propose a system dynamic model based on the Euler-Lagrange formulation with the assumption of piecewise constant curvature (PCC), where we accounts for the elasticity and gravity effects of the continuum robot. We also develop and apply a particle swarm optimization (PSO) algorithm to optimize the parameters of our developed controllers: an inverse dynamic proportional integral derivative (PID) controller and an inverse dynamic fuzzy logic controller (FLC), where we use the integral time of absolute error (ITAE) as the objective function for the PSO algorithm. We validate our proposed model and optimized controllers through different designed trajectories, simulated using our developed unique animated MATLAB simulation. The results show that the PSO-PID controller improves the rise time, overshoot percentage, and settling time by 16.3%, 31.1%, and 64.9%, respectively, compared to the PID controller without PSO. The PSO-FLC controller shows the best performance among all controllers, with a settling time of 0.7 s and a rise time of 0.4 s, leading to the highest level of precision in trajectory tracking. The ITAE error for the PSO-FLC controller is 11.4% and 29.9% lower than that of the PSO-PID and FLC controllers, respectively.
Collapse
Affiliation(s)
- Elsayed Atif Aner
- Department of Mechatronics Engineering, Egyptian Russian University (ERU), Badr, 11829, Cairo, Egypt.
- Department of Mechatronics Engineering, Ain Shams University (ASU), Cairo, 11517, Cairo, Egypt.
| | - Mohammed Ibrahim Awad
- Department of Mechatronics Engineering, Ain Shams University (ASU), Cairo, 11517, Cairo, Egypt
| | - Omar M Shehata
- Department of Mechatronics Engineering, Ain Shams University (ASU), Cairo, 11517, Cairo, Egypt
| |
Collapse
|
10
|
Nadzharyan TA, Kramarenko EY. Effects of Filler Anisometry on the Mechanical Response of a Magnetoactive Elastomer Cell: A Single-Inclusion Modeling Approach. Polymers (Basel) 2023; 16:118. [PMID: 38201782 PMCID: PMC10780330 DOI: 10.3390/polym16010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
A finite-element model of the mechanical response of a magnetoactive elastomer (MAE) volume element is presented. Unit cells containing a single ferromagnetic inclusion with geometric and magnetic anisotropy are considered. The equilibrium state of the cell is calculated using the finite-element method and cell energy minimization. The response of the cell to three different excitation modes is studied: inclusion rotation, inclusion translation, and uniaxial cell stress. The influence of the magnetic properties of the filler particles on the equilibrium state of the MAE cell is considered. The dependence of the mechanical response of the cell on the filler concentration and inclusion anisometry is calculated and analyzed. Optimal filler shapes for maximizing the magnetic response of the MAE are discussed.
Collapse
|
11
|
Vazquez-Perez F, Gila-Vilchez C, Leon-Cecilla A, Álvarez de Cienfuegos L, Borin D, Odenbach S, Martin JE, Lopez-Lopez MT. Fabrication and Actuation of Magnetic Shape-Memory Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37924281 PMCID: PMC10658454 DOI: 10.1021/acsami.3c14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Soft actuators are deformable materials that change their dimensions or shape in response to external stimuli. Among the various stimuli, remote magnetic fields are one of the most attractive forms of actuation, due to their ease of use, fast response, and safety in biological systems. Composites of magnetic particles with polymer matrices are the most common materials for magnetic soft actuators. In this paper, we demonstrate the fabrication and actuation of magnetic shape-memory materials based on hydrogels containing field-structured magnetic particles. These actuators are formed by placing the pregel dispersion into a mold of the desired on-field shape and exposing it to a homogeneous magnetic field until the gel point is reached. At this point, the material may be removed from the mold and fully gelled in the desired off-field shape. The resultant magnetic shape-memory material then transitions between these two shapes when it is subjected to successive cycles of a homogeneous magnetic field, acting as a large deformation actuator. For actuators that are planar in the off-field state, this can result in significant bending to return to the on-field state. In addition, it is possible to make shape-memory materials that twist under the application of a magnetic field. For these torsional actuators, both experimental and theoretical results are given.
Collapse
Affiliation(s)
- Francisco
J. Vazquez-Perez
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| | - Cristina Gila-Vilchez
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| | - Alberto Leon-Cecilla
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| | - Luis Álvarez de Cienfuegos
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente, Universidad de Granada, C. U. Fuentenueva, Granada E-18071, Spain
| | - Dmitry Borin
- Chair
of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, Dresden 01069, Germany
| | - Stefan Odenbach
- Chair
of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, Dresden 01069, Germany
| | - James E. Martin
- Sandia
National Laboratories, Albuquerque, New Mexico 87059, United States
| | - Modesto T. Lopez-Lopez
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| |
Collapse
|
12
|
Heunis CM, Wang Z, de Vente G, Misra S, Venkiteswaran VK. A Magnetic Bio-Inspired Soft Carrier as a Temperature-Controlled Gastrointestinal Drug Delivery System. Macromol Biosci 2023; 23:e2200559. [PMID: 36945731 DOI: 10.1002/mabi.202200559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Indexed: 03/23/2023]
Abstract
Currently, gastrointestinal bleeding in the colon wall and the small bowel is diagnosed and treated with endoscopes. However, the locations of this condition are often problematic to treat using traditional flexible and tethered tools. New studies commonly consider untethered devices for solving this problem. However, there still exists a gap in the extant literature, and more research is needed to diagnose and deliver drugs in the lower gastrointestinal tract using soft robotic carriers. This paper discusses the development of an untethered, magnetically-responsive bio-inspired soft carrier. A molding process is utilized to produce prototypes from Diisopropylidene-1,6-diphenyl-1,6-hexanediol-based Polymer with Ethylene Glycol Dimethacrylate (DiAPLEX) MP-3510 - a shape memory polymer with a low transition temperature to enable the fabrication of these carriers. The soft carrier design is validated through simulation results of deformation caused by magnetic elements embedded in the carrier in response to an external field. The thermal responsiveness of the fabricated prototype carriers is assessed ex vivo and in a phantom. The results indicate a feasible design capable of administering drugs to a target inside a phantom of a large intestine. The soft carrier introduces a method for the controlled release of drugs by utilizing the rubbery modulus of the polymer and increasing the recovery force through magnetic actuation.
Collapse
Affiliation(s)
- Christoff M Heunis
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Zhuoyue Wang
- Department of Biomedical Engineering, University of Groningen and University Medical Centre Groningen, Groningen, 9713 GZ, The Netherlands
| | - Gerko de Vente
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, 7500 AE, The Netherlands
- Department of Biomedical Engineering, University of Groningen and University Medical Centre Groningen, Groningen, 9713 GZ, The Netherlands
| | | |
Collapse
|
13
|
Bacchetti A, Lloyd P, Taccola S, Fakhoury E, Cochran S, Harris RA, Valdastri P, Chandler JH. Optimization and fabrication of programmable domains for soft magnetic robots: A review. Front Robot AI 2022; 9:1040984. [PMID: 36504496 PMCID: PMC9729867 DOI: 10.3389/frobt.2022.1040984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Driven by the aim of realizing functional robotic systems at the milli- and submillimetre scale for biomedical applications, the area of magnetically driven soft devices has received significant recent attention. This has resulted in a new generation of magnetically controlled soft robots with patterns of embedded, programmable domains throughout their structures. This type of programmable magnetic profiling equips magnetic soft robots with shape programmable memory and can be achieved through the distribution of discrete domains (voxels) with variable magnetic densities and magnetization directions. This approach has produced highly compliant, and often bio-inspired structures that are well suited to biomedical applications at small scales, including microfluidic transport and shape-forming surgical catheters. However, to unlock the full potential of magnetic soft robots with improved designs and control, significant challenges remain in their compositional optimization and fabrication. This review considers recent advances and challenges in the interlinked optimization and fabrication aspects of programmable domains within magnetic soft robots. Through a combination of improvements in the computational capacity of novel optimization methods with advances in the resolution, material selection and automation of existing and novel fabrication methods, significant further developments in programmable magnetic soft robots may be realized.
Collapse
Affiliation(s)
- Alistair Bacchetti
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom,Science and Technologies of Robotics in Medicine Laboratory, School of Electronic and Electrical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Peter Lloyd
- Science and Technologies of Robotics in Medicine Laboratory, School of Electronic and Electrical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Silvia Taccola
- Future Manufacturing Processes Research Group, University of Leeds, Leeds, United Kingdom
| | - Evan Fakhoury
- Industrial and Mechanical Engineering Department, Lebanese American University, Byblos, Lebanon
| | - Sandy Cochran
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Russell A. Harris
- Future Manufacturing Processes Research Group, University of Leeds, Leeds, United Kingdom
| | - Pietro Valdastri
- Science and Technologies of Robotics in Medicine Laboratory, School of Electronic and Electrical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - James H. Chandler
- Science and Technologies of Robotics in Medicine Laboratory, School of Electronic and Electrical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom,*Correspondence: James H. Chandler,
| |
Collapse
|
14
|
Wiersinga P, Sleavin A, Boom B, Masmeijer T, Flint S, Habtour E. Hybrid Compliant Musculoskeletal System for Fast Actuation in Robots. MICROMACHINES 2022; 13:1783. [PMID: 36296136 PMCID: PMC9611504 DOI: 10.3390/mi13101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A nature-inspired musculoskeletal system is designed and developed to examine the principle of nonlinear elastic energy storage-release for robotic applications. The musculoskeletal system architecture consists of elastically rigid segments and hyperelastic soft materials to emulate rigid-soft interactions in limbless vertebrates. The objectives are to (i) improve the energy efficiency of actuation beyond that of current pure soft actuators while (ii) producing a high range of motion similar to that of soft robots but with structural stability. This paper proposes a musculoskeletal design that takes advantage of structural segmentation to increase the system's degrees of freedom, which enhances the range of motion. Our findings show that rigid-soft interactions provide a remarkable increase in energy storage and release and, thus, an increase in the undulation speed. The energy efficiency achieved is approximately 68% for bending the musculoskeletal system from the straight configuration, compared to 2.5-30% efficiency in purely soft actuators. The hybrid compliance of the musculoskeletal system under investigation shows promise for alleviating the need for actuators at each joint in a robot.
Collapse
Affiliation(s)
- Pieter Wiersinga
- Faculty of Science and Engineering, University of Groningen, Postbus 72, 9700 AB Groningen, The Netherlands
| | - Aidan Sleavin
- Department of Aeronautics & Astronautics, The University of Washington, Seattle, WA 98195, USA
- The Illimited LAB, University of Washington, Guggenheim 211, Seattle, WA 98195, USA
| | - Bart Boom
- Department of Aeronautics & Astronautics, The University of Washington, Seattle, WA 98195, USA
- The Illimited LAB, University of Washington, Guggenheim 211, Seattle, WA 98195, USA
| | - Thijs Masmeijer
- Department of Aeronautics & Astronautics, The University of Washington, Seattle, WA 98195, USA
- The Illimited LAB, University of Washington, Guggenheim 211, Seattle, WA 98195, USA
| | - Spencer Flint
- Department of Aeronautics & Astronautics, The University of Washington, Seattle, WA 98195, USA
- The Illimited LAB, University of Washington, Guggenheim 211, Seattle, WA 98195, USA
| | - Ed Habtour
- Department of Aeronautics & Astronautics, The University of Washington, Seattle, WA 98195, USA
- The Illimited LAB, University of Washington, Guggenheim 211, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Rehan M, Al-Bahadly I, Thomas DG, Avci E. Development of a Robotic Capsule for in vivo Sampling of Gut Microbiota. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3191177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad Rehan
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - David G. Thomas
- Monogastric Research Centre, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| |
Collapse
|