1
|
Adeniyi A, Stramel DM, Rahman D, Rahman M, Yadav A, Zhou J, Kim GY, Agrawal SK. Utilizing mobile robotics for pelvic perturbations to improve balance and cognitive performance in older adults: a randomized controlled trial. Sci Rep 2023; 13:19381. [PMID: 37938618 PMCID: PMC10632386 DOI: 10.1038/s41598-023-46145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
Late-life balance disorders remain a severe problem with fatal consequences. Perturbation-based balance training (PBT), a form of rehabilitation that intentionally introduces small, unpredictable disruptions to an individual's gait cycle, can improve balance. The Tethered Pelvic Assist Device (TPAD) is a cable-driven robotic trainer that applies perturbations to the user's pelvis during treadmill walking. Earlier work showcased improved gait stability and the first evidence of increased cognition acutely. The mobile Tethered Pelvic Assist Device (mTPAD), a portable version of the TPAD, applies perturbations to a pelvic belt via a posterior walker during overground gait, as opposed to treadmill walking. Forty healthy older adults were randomly assigned to a control group (CG, n = 20) without mTPAD PBT or an experimental group (EG, n = 20) with mTPAD PBT for a two-day study. Day 1 consisted of baseline anthropometrics, vitals, and functional and cognitive measurements. Day 2 consisted of training with the mTPAD and post-interventional cognitive and functional measurements. Results revealed that the EG significantly outperformed the CG in several cognitive (SDMT-C and TMT-B) and functional (BBS and 4-Stage Balance: one-foot stand) measurements while showcasing increased confidence in mobility based on FES-I. To our knowledge, our study is the first randomized, large group (n = 40) clinical study exploring new mobile perturbation-based robotic gait training technology.
Collapse
Affiliation(s)
- Adedeji Adeniyi
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Danielle M Stramel
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Danish Rahman
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Montaha Rahman
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Arihant Yadav
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Jingzong Zhou
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Grace Y Kim
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sunil K Agrawal
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Adeniyi A, Stramel DM, Rahman D, Rahman M, Yadav A, Zhou J, Kim GY, Agrawal SK. Utilizing Mobile Robotics for Pelvic Perturbations to Improve Balance and Cognitive Performance in Older Adults: A Randomized Controlled Trial. RESEARCH SQUARE 2023:rs.3.rs-2997218. [PMID: 37333360 PMCID: PMC10275047 DOI: 10.21203/rs.3.rs-2997218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Late-life balance disorders remain a severe problem with fatal consequences. Perturbation-based balance training (PBT), a form of rehabilitation that intentionally introduces small, unpredictable disruptions to an individual's gait cycle, can improve balance. The Tethered Pelvic Assist Device (TPAD) is a cable-driven robotic trainer that applies perturbations to the user's pelvis during treadmill walking. Earlier work showcased improved gait stability and the first evidence of increased cognition acutely. The mobile Tethered Pelvic Assist Device (mTPAD), a portable version of the TPAD, applies perturbations to a pelvic belt via a posterior walker during overground gait, as opposed to treadmill walking. Forty healthy older adults were randomly assigned to a control group (CG, n = 20) without mTPAD PBT or an experimental group (EG, n = 20) with mTPAD PBT for a two-day study. Day 1 consisted of baseline anthropometrics, vitals, and functional and cognitive measurements. Day 2 consisted of training with the mTPAD and post-interventional cognitive and functional measurements. Results revealed that the EG significantly outperformed the CG in cognitive and functional tasks while showcasing increased confidence in mobility. Gait analysis demonstrated that the mTPAD PBT significantly improved mediolateral stability during lateral perturbations. To our knowledge, our study is the first randomized, large group (n = 40) clinical study exploring new mobile perturbation-based robotic gait training technology.
Collapse
Affiliation(s)
- Adedeji Adeniyi
- Vagelos College of Physicians & Surgeons, Columbia University Irvine Medical Center
| | | | | | | | | | | | - Grace Y Kim
- Vagelos College of Physicians & Surgeons, Columbia University Irvine Medical Center
| | | |
Collapse
|
3
|
Imani B, Najafi F. Dynamic analysis and control of a hybrid lower limb rehabilitation robot to reduce human-robot interaction forces. Proc Inst Mech Eng H 2023; 237:336-347. [PMID: 36727965 DOI: 10.1177/09544119221146243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study presents a model of cooperation between two planar manipulators including an orthosis and a programmable plate in form of a hybrid lower limb rehabilitation robot, which was designed and built at the University of Guilan. The aims of cooperation are to distribute the power required to move between the cooperative manipulators and also reduce the interaction forces between orthosis and leg. The cooperation is performed with two modes using the adjustment of the plate forces, a constant force in the vertical direction (CFV) and variant force proportional to orthosis torque (VFPOT). Kinematic and dynamic analysis of the hybrid lower limb rehabilitation robot and its control are also discussed in this study. The performance and effectiveness of the proposed hybrid robot are demonstrated on a healthy person in real-time. Each walking trial lasted 60 s and repeated 20 times for every mode. The walking speed was considered to be 1.5 km/h and weight compensator was adjusted with a constant weight unloading level of 70%. The results show that the VFPOT mode leads to a 45% reduction in the driving torque of the hip and knee joints compared to orthosis-only. This reduction is expected to reduce interaction force at the connection straps. So, it provides more patient comfort and safety, which can be effective in improving the time and process of rehabilitation.
Collapse
Affiliation(s)
- Babak Imani
- Faculty of Mechanical Engineering, University of Guilan, Rasht, Guilan, Iran
| | - Farid Najafi
- Faculty of Mechanical Engineering, University of Guilan, Rasht, Guilan, Iran
| |
Collapse
|
4
|
Thalman CM, Hertzell T, Debeurre M, Lee H. Multi-degrees-of-freedom soft robotic ankle-foot orthosis for gait assistance and variable ankle support. WEARABLE TECHNOLOGIES 2022; 3:e18. [PMID: 36721460 PMCID: PMC9886237 DOI: 10.1017/wtc.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023]
Abstract
This paper presents the design, modeling, analysis, fabrication, and experimental characterization of the Soft Robotic Ankle-Foot Orthosis (SR-AFO), which is a wearable soft robot designed for ankle assistance, and a pilot human study of its use. Using two novel pneumatically-powered soft actuators, the SR-AFO is designed to assist the ankle in multiple degrees-of-freedom during standing and walking tasks. The flat fabric pneumatic artificial muscle (ff-PAM) contracts upon pressurization and assists ankle plantarflexion in the sagittal plane. The Multi-material Actuator for Variable Stiffness (MAVS) aids in supporting ankle inversion/eversion in the frontal plane. Analytical models of the ff-PAM and MAVS were created to understand how the changing of the design parameters affects tensile force generation and stiffness support, respectively. The models were validated by both finite element analysis and experimental characterization using a universal testing machine. A set of human experiments was performed with able-bodied participants to evaluate: 1) lateral ankle support during quiet standing, 2) lateral ankle support during walking over compliant surfaces, and 3) plantarflexion assistance during push-off in treadmill walking. Group results revealed increased lateral ankle stiffness during quiet standing with the MAVS active, reduced lateral ankle deflection while walking over compliant surfaces with the MAVS active, and reduced muscle effort in ankle platarflexors during 40-60% of the gait cycle with the dual ff-PAM active. The SR-AFO shows promising results in providing lateral ankle support and plantarflexion assistance with able-bodied participants, which suggests a potential to help restore the gait of impaired users in future trials.
Collapse
Affiliation(s)
- Carly M. Thalman
- Neuromuscular Control and Human Robotics Laboratory, Ira A. Fulton Schools or Engineering, Arizona State University, Tempe, Arizona, USA
| | - Tiffany Hertzell
- Neuromuscular Control and Human Robotics Laboratory, Ira A. Fulton Schools or Engineering, Arizona State University, Tempe, Arizona, USA
| | - Marielle Debeurre
- Neuromuscular Control and Human Robotics Laboratory, Ira A. Fulton Schools or Engineering, Arizona State University, Tempe, Arizona, USA
| | - Hyunglae Lee
- Neuromuscular Control and Human Robotics Laboratory, Ira A. Fulton Schools or Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|