1
|
Cai F, Xu N, Liu Z, Ding R, Yu S, Dong M, Wang S, Shen J, Tae HS, Adams DJ, Zhang X, Dai Q. Targeting of N-Type Calcium Channels via GABAB-Receptor Activation by α-Conotoxin Vc1.1 Variants Displaying Improved Analgesic Activity. J Med Chem 2018; 61:10198-10205. [DOI: 10.1021/acs.jmedchem.8b01343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fengtao Cai
- Beijing Institute of Biotechnology, Beijing 100071, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Ning Xu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Rong Ding
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Mingxin Dong
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shuo Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jintao Shen
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xuerong Zhang
- School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
2
|
Peng C, Yao G, Gao BM, Fan CX, Bian C, Wang J, Cao Y, Wen B, Zhu Y, Ruan Z, Zhao X, You X, Bai J, Li J, Lin Z, Zou S, Zhang X, Qiu Y, Chen J, Coon SL, Yang J, Chen JS, Shi Q. High-throughput identification of novel conotoxins from the Chinese tubular cone snail (Conus betulinus) by multi-transcriptome sequencing. Gigascience 2016; 5:17. [PMID: 27087938 PMCID: PMC4832519 DOI: 10.1186/s13742-016-0122-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/07/2016] [Indexed: 01/06/2023] Open
Abstract
Background The venom of predatory marine cone snails mainly contains a diverse array of unique bioactive peptides commonly referred to as conopeptides or conotoxins. These peptides have proven to be valuable pharmacological probes and potential drugs because of their high specificity and affinity to important ion channels, receptors and transporters of the nervous system. Most previous studies have focused specifically on the conopeptides from piscivorous and molluscivorous cone snails, but little attention has been devoted to the dominant vermivorous species. Results The vermivorous Chinese tubular cone snail, Conus betulinus, is the dominant Conus species inhabiting the South China Sea. The transcriptomes of venom ducts and venom bulbs from a variety of specimens of this species were sequenced using both next-generation sequencing and traditional Sanger sequencing technologies, resulting in the identification of a total of 215 distinct conopeptides. Among these, 183 were novel conopeptides, including nine new superfamilies. It appeared that most of the identified conopeptides were synthesized in the venom duct, while a handful of conopeptides were identified only in the venom bulb and at very low levels. Conclusions We identified 215 unique putative conopeptide transcripts from the combination of five transcriptomes and one EST sequencing dataset. Variation in conopeptides from different specimens of C. betulinus was observed, which suggested the presence of intraspecific variability in toxin production at the genetic level. These novel conopeptides provide a potentially fertile resource for the development of new pharmaceuticals, and a pathway for the discovery of new conotoxins. Electronic supplementary material The online version of this article (doi:10.1186/s13742-016-0122-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Peng
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Ge Yao
- Research Institute of Pharmaceutical Chemistry, Beijing, 102205 China
| | - Bing-Miao Gao
- School of Pharmaceutical Sciences, Hainan Medical University, Haikou, 571199 China
| | - Chong-Xu Fan
- Research Institute of Pharmaceutical Chemistry, Beijing, 102205 China
| | - Chao Bian
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | | | - Ying Cao
- Research Institute of Pharmaceutical Chemistry, Beijing, 102205 China
| | - Bo Wen
- BGI-Shenzhen, Shenzhen, 518083 China
| | | | - Zhiqiang Ruan
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | | | - Xinxin You
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | - Jie Bai
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | - Jia Li
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | | | | | - Xinhui Zhang
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | - Ying Qiu
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | - Jieming Chen
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | - Steven L Coon
- Molecular Genomics Laboratory, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jiaan Yang
- Micro Pharmatech Ltd, Wuhan, 430075 China
| | - Ji-Sheng Chen
- Research Institute of Pharmaceutical Chemistry, Beijing, 102205 China
| | - Qiong Shi
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China ; BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, 212000 China
| |
Collapse
|
5
|
Molecular phylogeny, classification and evolution of conopeptides. J Mol Evol 2012; 74:297-309. [PMID: 22760645 DOI: 10.1007/s00239-012-9507-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Conopeptides are toxins expressed in the venom duct of cone snails (Conoidea, Conus). These are mostly well-structured peptides and mini-proteins with high potency and selectivity for a broad range of cellular targets. In view of these properties, they are widely used as pharmacological tools and many are candidates for innovative drugs. The conopeptides are primarily classified into superfamilies according to their peptide signal sequence, a classification that is thought to reflect the evolution of the multigenic system. However, this hypothesis has never been thoroughly tested. Here we present a phylogenetic analysis of 1,364 conopeptide signal sequences extracted from GenBank. The results validate the current conopeptide superfamily classification, but also reveal several important new features. The so-called "cysteine-poor" conopeptides are revealed to be closely related to "cysteine-rich" conopeptides; with some of them sharing very similar signal sequences, suggesting that a distinction based on cysteine content and configuration is not phylogenetically relevant and does not reflect the evolutionary history of conopeptides. A given cysteine pattern or pharmacological activity can be found across different superfamilies. Furthermore, a few conopeptides from GenBank do not cluster in any of the known superfamilies, and could represent yet-undefined superfamilies. A clear phylogenetically based classification should help to disentangle the diversity of conopeptides, and could also serve as a rationale to understand the evolution of the toxins in the numerous other species of conoideans and venomous animals at large.
Collapse
|
6
|
Chun JBS, Baker MR, Kim DH, Leroy M, Toribo P, Bingham JP. Cone snail milked venom dynamics--a quantitative study of Conus purpurascens. Toxicon 2012; 60:83-94. [PMID: 22497788 DOI: 10.1016/j.toxicon.2012.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/10/2012] [Accepted: 03/22/2012] [Indexed: 11/16/2022]
Abstract
Milked venom from cone snails represent a novel biological resource with a proven track record for drug discovery. To strengthen this correlation, we undertook a chromatographic and mass spectrometric study of individual milked venoms from Conus purpurascens. Milked venoms demonstrate extensive peptide differentiation amongst individual specimens and during captivity. Individual snails were found to lack a consistent set of described conopeptides, but instead demonstrated the ability to change venom expression, composition and post-translational modification incorporation; all variations contribute to an increase in chemical diversity and prey targeting strategies. Quantitative amino acid analysis revealed that milked venom peptides are expressed at ranges up to 3.51-121.01 μM within single milked venom samples. This provides for a 6.37-20,965 fold-excess of toxin to induce apparent IC₅₀ for individual conopeptides identified in this study. Comparative molecular mass analysis of duct venom, milked venom and radula tooth extracts from single C. purpurascens specimens demonstrated a level of peptide continuity. Numerous highly abundant and unique conopeptides remain to be characterized. This study strengthens the notion that approaches in conopeptide drug lead discovery programs will potentially benefit from a greater understanding of the toxinological nature of the milked venoms of Conus.
Collapse
Affiliation(s)
- Joycelyn B S Chun
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | | | | | |
Collapse
|
10
|
Livett BG, Sandall DW, Keays D, Down J, Gayler KR, Satkunanathan N, Khalil Z. Therapeutic applications of conotoxins that target the neuronal nicotinic acetylcholine receptor. Toxicon 2006; 48:810-29. [PMID: 16979678 DOI: 10.1016/j.toxicon.2006.07.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pain therapeutics discovered by molecular mining of the expressed genome of Australian predatory cone snails are providing lead compounds for the treatment of neurological diseases such as multiple sclerosis, shingles, diabetic neuropathy and other painful neurological conditions. The high specificity exhibited by these novel compounds for neuronal receptors and ion channels in the brain and nervous system indicates the high degree of selectivity that this class of neuropeptides can be expected to show when used therapeutically in humans. A lead compound, ACV1 (conotoxin Vc1.1 from Conus victoriae), has entered Phase II clinical trials and is being developed for the treatment for neuropathic pain. ACV1 will be targeted initially for the treatment of sciatica, shingles and diabetic neuropathy. The compound is a 16 amino acid peptide [Sandall et al., 2003. A novel alpha-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42, 6904-6911], an antagonist of neuronal nicotinic acetylcholine receptors. It has potent analgesic activity following subcutaneous or intramuscular administration in several preclinical animal models of human neuropathic pain [Satkunanathan et al., 2005. Alpha conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurons. Brain. Res. 1059, 149-158]. ACV1 may act as an analgesic by decreasing ectopic excitation in sensory nerves. In addition ACV1 appears to accelerate the recovery of injured nerves and tissues.
Collapse
Affiliation(s)
- Bruce G Livett
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Clark RJ, Fischer H, Nevin ST, Adams DJ, Craik DJ. The synthesis, structural characterization, and receptor specificity of the alpha-conotoxin Vc1.1. J Biol Chem 2006; 281:23254-63. [PMID: 16754662 DOI: 10.1074/jbc.m604550200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-conotoxin Vc1.1 is a small disulfide-bonded peptide currently in development as a treatment for neuropathic pain. This study describes the synthesis, determination of the disulfide connectivity, and the determination of the three-dimensional structure of Vc1.1 using NMR spectroscopy. Vc1.1 was shown to inhibit nicotine-evoked membrane currents in isolated bovine chromaffin cells in a concentration-dependent manner and preferentially targets peripheral nicotinic acetylcholine receptor (nAChR) subtypes over central subtypes. Specifically, Vc1.1 is selective for alpha3-containing nAChR subtypes. The three-dimensional structure of Vc1.1 comprises a small alpha-helix spanning residues Pro6 to Asp11 and is braced by the I-III, II-IV disulfide connectivity seen in other alpha-conotoxins. A comparison of the structure of Vc1.1 with other alpha-conotoxins, taken together with nAChR selectivity data, suggests that the conserved proline at position 6 is important for binding, whereas a number of residues in the C-terminal portion of the peptide contribute toward the selectivity. The structure reported here should open new opportunities for further development of Vc1.1 or analogues as analgesic agents.
Collapse
Affiliation(s)
- Richard J Clark
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
12
|
Jakubowski JA, Kelley WP, Sweedler JV. Screening for post-translational modifications in conotoxins using liquid chromatography/mass spectrometry: an important component of conotoxin discovery. Toxicon 2006; 47:688-99. [PMID: 16574181 DOI: 10.1016/j.toxicon.2006.01.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometry has emerged as an important technique for conotoxin analysis due to its capacity for selective, sensitive, information-rich analyses. Using liquid chromatography/mass spectrometry, Conus venom can be fractionated and the peptides surveyed for specific post-translational modifications, indicating those toxin components likely to have an important biological function. With Conus striatus and Conus victoriae venom as models, bromination, carboxylation and glycosylation modifications are identified through characteristics such as isotopic distribution and labile losses observed during mass spectrometric analysis. This modification screening approach enables the identification of a C. victoriae bromo-carboxy-conotoxin, designated vc5c, as a candidate for detailed mass spectrometric analysis. Using a cDNA sequence coupled with liquid chromatography/mass spectrometry and nanoelectrospray ionization-ion trap-mass spectrometry, the sequence of vc5c is determined to be ICCYPNXWCCD, where W is 6-bromotryptophan, X is gamma-carboxy glutamate and C is disulfide-linked cysteine. This represents the ninth T-superfamily (-CC-CC- scaffold) toxin that has been isolated from venom and characterized.
Collapse
Affiliation(s)
- Jennifer A Jakubowski
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue 63-5, Urbana, IL 61801, USA
| | | | | |
Collapse
|