1
|
Nasir NSA, Deivasigamani R, Wee MFMR, Hamzah AA, Zaid MHM, Rahim MKA, Kayani AA, Abdulhameed A, Buyong MR. Protein Albumin Manipulation and Electrical Quantification of Molecular Dielectrophoresis Responses for Biomedical Applications. MICROMACHINES 2022; 13:mi13081308. [PMID: 36014230 PMCID: PMC9415755 DOI: 10.3390/mi13081308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 05/17/2023]
Abstract
Research relating to dielectrophoresis (DEP) has been progressing rapidly through time as it is a strong and controllable technique for manipulation, separation, preconcentration, and partitioning of protein. Extensive studies have been carried out on protein DEP, especially on Bovine Serum Albumin (BSA). However, these studies involve the usage of dye and fluorescent probes to observe DEP responses as the physical properties of protein albumin molecular structure are translucent. The use of dye and the fluorescent probe could later affect the protein's physiology. In this article, we review three methods of electrical quantification of DEP responses: electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and capacitance measurement for protein BSA DEP manipulation. The correlation of these methods with DEP responses is further discussed. Based on the observations on capacitance measurement, it can be deduced that the electrical quantifying method is reliable for identifying DEP responses. Further, the possibility of manipulating the protein and electrically quantifying DEP responses while retaining the original physiology of the protein and without the usage of dye or fluorescent probe is discussed.
Collapse
Affiliation(s)
- Nur Shahira Abdul Nasir
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Revathy Deivasigamani
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Mohd Hazani Mat Zaid
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | | | - Aminuddin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Abdullah Abdulhameed
- Department of Electronics & Communication Engineering, Faculty of Engineering & Petroleum, Hadhramout University, Al-Mukalla 50512, Hadhramout, Yemen
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: ; Tel.: +60-12-385-2713
| |
Collapse
|