1
|
Nguyen QLD, Simoni J, Dorney KM, Shi X, Ellis JL, Brooks NJ, Hickstein DD, Grennell AG, Yazdi S, Campbell EEB, Tan LZ, Prendergast D, Daligault J, Kapteyn HC, Murnane MM. Direct Observation of Enhanced Electron-Phonon Coupling in Copper Nanoparticles in the Warm-Dense Matter Regime. PHYSICAL REVIEW LETTERS 2023; 131:085101. [PMID: 37683150 DOI: 10.1103/physrevlett.131.085101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/27/2022] [Accepted: 05/26/2023] [Indexed: 09/10/2023]
Abstract
Warm dense matter (WDM) represents a highly excited state that lies at the intersection of solids, plasmas, and liquids and that cannot be described by equilibrium theories. The transient nature of this state when created in a laboratory, as well as the difficulties in probing the strongly coupled interactions between the electrons and the ions, make it challenging to develop a complete understanding of matter in this regime. In this work, by exciting isolated ∼8 nm copper nanoparticles with a femtosecond laser below the ablation threshold, we create uniformly excited WDM. Using photoelectron spectroscopy, we measure the instantaneous electron temperature and extract the electron-ion coupling of the nanoparticle as it undergoes a solid-to-WDM phase transition. By comparing with state-of-the-art theories, we confirm that the superheated nanoparticles lie at the boundary between hot solids and plasmas, with associated strong electron-ion coupling. This is evidenced both by a fast energy loss of electrons to ions, and a strong modulation of the electron temperature induced by strong acoustic breathing modes that change the nanoparticle volume. This work demonstrates a new route for experimental exploration of the exotic properties of WDM.
Collapse
Affiliation(s)
- Quynh L D Nguyen
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Jacopo Simoni
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kevin M Dorney
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Xun Shi
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Jennifer L Ellis
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Nathan J Brooks
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Daniel D Hickstein
- Kapteyn-Murnane Laboratories Inc., 4775 Walnut St #102, Boulder, Colorado 80301, USA
| | - Amanda G Grennell
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309 80309, USA
| | - Sadegh Yazdi
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Eleanor E B Campbell
- EaStCHEM, School of Chemistry, Edinburgh University, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jerome Daligault
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Henry C Kapteyn
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
- Kapteyn-Murnane Laboratories Inc., 4775 Walnut St #102, Boulder, Colorado 80301, USA
| | - Margaret M Murnane
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| |
Collapse
|
2
|
Arran C, Bradford P, Dearling A, Hicks GS, Al-Atabi S, Antonelli L, Ettlinger OC, Khan M, Read MP, Glize K, Notley M, Walsh CA, Kingham RJ, Najmudin Z, Ridgers CP, Woolsey NC. Measurement of Magnetic Cavitation Driven by Heat Flow in a Plasma. PHYSICAL REVIEW LETTERS 2023; 131:015101. [PMID: 37478421 DOI: 10.1103/physrevlett.131.015101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/22/2023] [Accepted: 05/17/2023] [Indexed: 07/23/2023]
Abstract
We describe the direct measurement of the expulsion of a magnetic field from a plasma driven by heat flow. Using a laser to heat a column of gas within an applied magnetic field, we isolate Nernst advection and show how it changes the field over a nanosecond timescale. Reconstruction of the magnetic field map from proton radiographs demonstrates that the field is advected by heat flow in advance of the plasma expansion with a velocity v_{N}=(6±2)×10^{5} m/s. Kinetic and extended magnetohydrodynamic simulations agree well in this regime due to the buildup of a magnetic transport barrier.
Collapse
Affiliation(s)
- C Arran
- York Plasma Institute, University of York, York YO10 5DD, United Kingdom
| | - P Bradford
- York Plasma Institute, University of York, York YO10 5DD, United Kingdom
| | - A Dearling
- York Plasma Institute, University of York, York YO10 5DD, United Kingdom
| | - G S Hicks
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - S Al-Atabi
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - L Antonelli
- First Light Fusion Ltd., Unit 9/10 Oxford Industrial Park, Mead Road, Yarnton, Kidlington OX5 1QU, United Kingdom
| | - O C Ettlinger
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - M Khan
- York Plasma Institute, University of York, York YO10 5DD, United Kingdom
| | - M P Read
- First Light Fusion Ltd., Unit 9/10 Oxford Industrial Park, Mead Road, Yarnton, Kidlington OX5 1QU, United Kingdom
| | - K Glize
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 OQX, United Kingdom
| | - M Notley
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 OQX, United Kingdom
| | - C A Walsh
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550-9234, USA
| | - R J Kingham
- Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - Z Najmudin
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - C P Ridgers
- York Plasma Institute, University of York, York YO10 5DD, United Kingdom
| | - N C Woolsey
- York Plasma Institute, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
4
|
Vallance C. Multi-mass velocity-map imaging studies of photoinduced and electron-induced chemistry. Chem Commun (Camb) 2019; 55:6336-6352. [PMID: 31099379 DOI: 10.1039/c9cc02426c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-mass velocity-map imaging (VMI) is becoming established as a promising method for probing the dynamics of a variety of gas-phase chemical processes. We provide an overview of velocity-map imaging and multi-mass velocity-map imaging techniques, highlighting examples in which these approaches have been used to provide mechanistic insights into a range of photoinduced and electron-induced chemical processes. Multi-mass detection capabilities have also led to the development of two new tools for the chemical dynamics toolbox, in the form of Coulomb-explosion imaging and covariance-map imaging. These allow details of molecular structure to be followed in real time over the course of a chemical reaction, offering the tantalising prospect of recording real-time 'molecular movies' of chemical dynamics. As these new methods become established within the reaction dynamics community, they promise new mechanistic insights into chemistry relevant to fields ranging from atmospheric chemistry and astrochemistry through to synthetic organic photochemistry and biology.
Collapse
Affiliation(s)
- Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK.
| |
Collapse
|
5
|
Baddour N, Chouinard U. Theory and operational rules for the discrete Hankel transform. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2015; 32:611-622. [PMID: 26366771 DOI: 10.1364/josaa.32.000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Previous definitions of a discrete Hankel transform (DHT) have focused on methods to approximate the continuous Hankel integral transform. In this paper, we propose and evaluate the theory of a DHT that is shown to arise from a discretization scheme based on the theory of Fourier-Bessel expansions. The proposed transform also possesses requisite orthogonality properties which lead to invertibility of the transform. The standard set of shift, modulation, multiplication, and convolution rules are derived. In addition to the theory of the actual manipulated quantities which stand in their own right, this DHT can be used to approximate the continuous forward and inverse Hankel transform in the same manner that the discrete Fourier transform is known to be able to approximate the continuous Fourier transform.
Collapse
|
6
|
Guizar-Sicairos M, Gutiérrez-Vega JC. Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2004; 21:53-8. [PMID: 14725397 DOI: 10.1364/josaa.21.000053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The method originally proposed by Yu et al. [Opt. Lett. 23, 409 (1998)] for evaluating the zero-order Hankel transform is generalized to high-order Hankel transforms. Since the method preserves the discrete form of the Parseval theorem, it is particularly suitable for field propagation. A general algorithm for propagating an input field through axially symmetric systems using the generalized method is given. The advantages and the disadvantages of the method with respect to other typical methods are discussed.
Collapse
Affiliation(s)
- Manuel Guizar-Sicairos
- Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey, México 64849
| | | |
Collapse
|
7
|
Markham J, Conchello JA. Numerical evaluation of Hankel transforms for oscillating functions. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2003; 20:621-630. [PMID: 12683487 DOI: 10.1364/josaa.20.000621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Six methods for the numerical calculation of zero-order Hankel transforms of oscillating functions were evaluated. One method based on Filon quadrature philosophy, two published projection-slice methods, and a third projection-slice method based on a new approach to computation of the Abel transform were implemented; alternative versions of two of the projection-slice methods were derived for more accurate approximations in the projection step. These six algorithms were tested with an oscillating sweep signal and with the calculation of a three-dimensional diffraction-limited point-spread function of a fluorescence microscope. We found that the Filon quadrature method is highly accurate but also computationally demanding. The projection-slice methods, in particular the new one that we derived, offer an excellent compromise between accuracy and computational efficiency.
Collapse
Affiliation(s)
- Joanne Markham
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
8
|
Luo DS, Yagle AE. A Kalman filtering approach to stochastic global and region-of-interest tomography. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 1996; 5:471-479. [PMID: 18285132 DOI: 10.1109/83.491320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We define two forms of stochastic tomography. In global tomography, the goal is to reconstruct an object from noisy observations of all of its projections. In region-of-interest (ROI) tomography, the goal is to reconstruct a small portion of an object (an ROI) from noisy observations of its projections densely sampled in and near the ROI and sparsely sampled away from the ROI. We solve both problems by expanding the object and its projections in a circular harmonic (Fourier) series in the angular variable so that the Radon transform becomes Abel transforms of integer orders applied to the harmonics. The algorithm has three major components. First, we fit state-space models to each order of Abel transform and thus represent the Radon transform operation as a parallel bank of systems, each of which computes the appropriate Abel transform of a circular harmonic. A variable transformation here allows either the global or ROI problem to be solved. Second, the object harmonics are modeled as a Brownian branch. This is a two-point boundary value system, which is Markovianized into a form suitable for the Kalman filter. Finally, a parallel bank of Kalman smoothing filters independently estimates each circular harmonic from the noisy projection data. Numerical examples illustrate the proposed procedure.
Collapse
Affiliation(s)
- D S Luo
- Dept. of Electr. Eng. and Comput. Sci., Michigan Univ., Ann Arbor, MI
| | | |
Collapse
|