1
|
Jeong JH, Lee B, Hong J, Min C, Persad AR, Yang TH, Park YH. Cardiovascular hardware simulator and artificial aorta-generated central blood pressure waveform database according to various vascular ages for cardiovascular health monitoring applications. Comput Biol Med 2024; 172:108224. [PMID: 38460314 DOI: 10.1016/j.compbiomed.2024.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
This study presents a database of central blood pressure waveforms according to cardiovascular health conditions, to supplement the lack of clinical data in cardiovascular health research, constructed by a cardiovascular simulator. Blood pressure (BP) is the most frequently measured biomarker, and in addition to systolic and diastolic pressure, its waveform represents the various conditions of cardiovascular health. A BP waveform is formed by overlapping the forward and reflected waves, which are affected by the pulse wave velocity (PWV). The increase in vascular stiffness with aging increases PWV, and the PWV-age distribution curve is called vascular age. For cardiovascular health research, extensive data of central BP waveform is essential, but the clinical data published so far are insufficient and imbalanced in quantity and quality. This study reproduces the central BP waveform using a cardiovascular hardware simulator and artificial aortas, which mimic the physiological structure and properties of the human. The simulator can adjust cardiovascular health conditions to the same level as humans, such as heart rate of 40-100 BPM, stroke volume of 40-100 mL, and peripheral resistance of 12 steps. Also, 6 artificial aortas with vascular ages in the 20-70 were fabricated to reproduce the increase in vascular stiffness due to aging. Vascular age calculated from measured stiffness of artificial aorta and central BP waveform showed an error of less than 3 years from the clinical value. Through this, a total of 636 waveforms were created to construct a central BP waveform database according to controlled various cardiovascular health conditions.
Collapse
Affiliation(s)
- Jae-Hak Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Bomi Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Junki Hong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Changhee Min
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Adelle Ria Persad
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Tae-Heon Yang
- Department of Mechanical and Aerospace Engineering, Konkuk University, Seoul, 05029, South Korea.
| | - Yong-Hwa Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Jeong JH, Lee B, Hong J, Yang TH, Park YH. Reproduction of human blood pressure waveform using physiology-based cardiovascular simulator. Sci Rep 2023; 13:7856. [PMID: 37188872 DOI: 10.1038/s41598-023-35055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
This study presents a cardiovascular simulator that mimics the human cardiovascular system's physiological structure and properties to reproduce the human blood pressure waveform. Systolic, diastolic blood pressures, and its waveform are key indicators of cardiovascular health. The blood pressure waveform is closely related to the pulse wave velocity and the overlap of the forward and reflected pressure waves. The presented cardiovascular simulator includes an artificial aorta made of biomimetic silicone. The artificial aorta has the same shape and stiffness as the human standard and is encased with a compliance chamber. The compliance chamber prevents distortion of the blood pressure waveform from strain-softening by applying extravascular pressure. The blood pressure waveform reproduced by the simulator has a pressure range of 80-120 mmHg, a pulse wave velocity of 6.58 m/s, and an augmentation index of 13.3%. These values are in the middle of the human standard range, and the reproduced blood pressure waveform is similar to that of humans. The errors from the human standard values are less than 1 mmHg for blood pressure, 0.05 m/s for pulse wave velocity, and 3% for augmentation index. The changes in blood pressure waveform according to cardiovascular parameters, including heart rate, stroke volume, and peripheral resistance, were evaluated. The same pressure ranges and trends as in humans were observed for systolic and diastolic blood pressures according to cardiovascular parameters.
Collapse
Affiliation(s)
- Jae-Hak Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bomi Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Junki Hong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Tae-Heon Yang
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Republic of Korea
| | - Yong-Hwa Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Xu KW, Gao Q, Wan M, Zhang K. Mock circulatory loop applications for testing cardiovascular assist devices and in vitro studies. Front Physiol 2023; 14:1175919. [PMID: 37123281 PMCID: PMC10133581 DOI: 10.3389/fphys.2023.1175919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
The mock circulatory loop (MCL) is an in vitro experimental system that can provide continuous pulsatile flows and simulate different physiological or pathological parameters of the human circulation system. It is of great significance for testing cardiovascular assist device (CAD), which is a type of clinical instrument used to treat cardiovascular disease and alleviate the dilemma of insufficient donor hearts. The MCL installed with different types of CADs can simulate specific conditions of clinical surgery for evaluating the effectiveness and reliability of those CADs under the repeated performance tests and reliability tests. Also, patient-specific cardiovascular models can be employed in the circulation of MCL for targeted pathological study associated with hemodynamics. Therefore, The MCL system has various combinations of different functional units according to its richful applications, which are comprehensively reviewed in the current work. Four types of CADs including prosthetic heart valve (PHV), ventricular assist device (VAD), total artificial heart (TAH) and intra-aortic balloon pump (IABP) applied in MCL experiments are documented and compared in detail. Moreover, MCLs with more complicated structures for achieving advanced functions are further introduced, such as MCL for the pediatric application, MCL with anatomical phantoms and MCL synchronizing multiple circulation systems. By reviewing the constructions and functions of available MCLs, the features of MCLs for different applications are summarized, and directions of developing the MCLs are suggested.
Collapse
Affiliation(s)
- Ke-Wei Xu
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
| | - Qi Gao
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
- *Correspondence: Qi Gao,
| | - Min Wan
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, China
| | - Ke Zhang
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, China
| |
Collapse
|
4
|
Li T, Copeland C, Le A. Glutamine Metabolism in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:17-38. [PMID: 34014532 DOI: 10.1007/978-3-030-65768-0_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism is a fundamental process for all cellular functions. For decades, there has been growing evidence of a relationship between metabolism and malignant cell proliferation. Unlike normal differentiated cells, cancer cells have reprogrammed metabolism in order to fulfill their energy requirements. These cells display crucial modifications in many metabolic pathways, such as glycolysis and glutaminolysis, which include the tricarboxylic acid (TCA) cycle, the electron transport chain (ETC), and the pentose phosphate pathway (PPP) [1]. Since the discovery of the Warburg effect, it has been shown that the metabolism of cancer cells plays a critical role in cancer survival and growth. More recent research suggests that the involvement of glutamine in cancer metabolism is more significant than previously thought. Glutamine, a nonessential amino acid with both amine and amide functional groups, is the most abundant amino acid circulating in the bloodstream [2]. This chapter discusses the characteristic features of glutamine metabolism in cancers and the therapeutic options to target glutamine metabolism for cancer treatment.
Collapse
Affiliation(s)
- Ting Li
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
5
|
Ferrari G, Górczyńska K, Mimmo R, De Lazzari C, Clemente F, Tosti G, Guaragno M. IABP Assistance: A Test Bench for the Analysis of its Effects on Ventricular Energetics and Hemodynamics. Int J Artif Organs 2018. [DOI: 10.1177/039139880102400505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
IABP assistance is frequently used to support heart recovery, improving coronary circulation and re-establishing the balance between oxygen availability and consumption. Hemodynamic and energetic parameters (endocardial viability ratio, ventricular energetics) are used to evaluate its effectiveness which depends on internal (timing, balloon volume and position) and external factors (circulatory conditions). Considering short, medium and long-term effects of IABP, the first depends on its mechanical action, the latter on the changes induced in circulatory parameters. The analysis of the first is important because conditions for the onset of a virtuous cycle able to support ventricular recovery are created. Simulation systems could be helpful in this analysis for the implicit reliability and reproducibility of the experiments, provided that they are able to reproduce both hemodynamic phenomena and energetic relationships. The aim of this paper is to present a system originally developed to test mechanical heart assist devices and modified for IABP testing. Data reported here are obtained from in vitro experiments. A partial verification, obtained from the literature is presented.
Collapse
Affiliation(s)
- G. Ferrari
- CNR Institute for Biomedical Technology, Rome - Italy
| | - K. Górczyńska
- PAN Institute of Biocybernetics and Biomedical Engineering, Warsaw - Poland
| | - R. Mimmo
- CNR Institute for Biomedical Technology, Rome - Italy
| | - C. De Lazzari
- CNR Institute for Biomedical Technology, Rome - Italy
| | - F. Clemente
- CNR Institute for Biomedical Technology, Rome - Italy
| | - G. Tosti
- CNR Institute for Biomedical Technology, Rome - Italy
| | - M. Guaragno
- CNR Institute for Biomedical Technology, Rome - Italy
| |
Collapse
|
6
|
Kolyva C, Biglino G, Pepper JR, Khir AW. A mock circulatory system with physiological distribution of terminal resistance and compliance: application for testing the intra-aortic balloon pump. Artif Organs 2010; 36:E62-70. [PMID: 21039645 DOI: 10.1111/j.1525-1594.2010.01071.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A mock circulatory system (MCS) was designed to replicate a physiological environment for in vitro testing and was assessed with the intra-aortic balloon pump (IABP). The MCS was comprised of an artificial left ventricle (LV), connected to a 14-branch polyurethane-compound aortic model. Physiological distribution of terminal resistance and compliance according to published data was implemented with capillary tubes of different sizes and syringes of varying air volume, respectively, fitted at the outlets of the branches. The ends of the aortic branches were connected to a common tube representing the venous system and an overhead reservoir provided atrial pressure. An IABP operating a 40-cc balloon was set to counterpulsate with the LV. Total arterial compliance of the system was 0.94 mL/mm Hg and total arterial resistance was 20.3 ± 3.3 mm Hg/L/min. At control, physiological flow distribution was achieved and both mean and phasic aortic pressure and flow were physiological. With the IABP, aortic pressure exhibited the major features of counterpulsation: diastolic augmentation during inflation, inflection point at onset of deflation, and end-diastolic reduction at the end of deflation. The contribution of balloon inflation and deflation was also evident on the aortic flow pattern. This MCS was verified to be suitable for IABP testing and with further adaptations it could be used for studying other hemodynamic problems and ventricular assist devices.
Collapse
Affiliation(s)
- Christina Kolyva
- Brunel Institute for Bioengineering, Brunel University, Middlesex Royal Brompton Hospital, Imperial College, London, UK
| | | | | | | |
Collapse
|
7
|
Kolyva C, Biglino G, Pepper JR, Khir AW. A Mock Circulatory System With Physiological Distribution of Terminal Resistance and Compliance: Application for Testing the Intra-Aortic Balloon Pump. Artif Organs 2010. [DOI: 10.1111/j.1525-1594.2010.01071.x medline.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Hariharan R, Menon KA. A fluidic drive system for intra-aortic balloon heart assist device. IEEE Trans Biomed Eng 1978; 25:301-3. [PMID: 680764 DOI: 10.1109/tbme.1978.326348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Buoncristiani JF, Liedtke AJ, Strong RM, Urschel CW. Parameter estimates of a left ventricular model during ejection. IEEE Trans Biomed Eng 1973; 20:110-4. [PMID: 4688301 DOI: 10.1109/tbme.1973.324171] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|