1
|
Rodriguez-Falces J, Malanda A, Mariscal C, Recalde S, Navallas J. The probability density function of the surface electromyogram and its dependence on contraction force in the vastus lateralis. Biomed Eng Online 2024; 23:106. [PMID: 39462400 PMCID: PMC11515092 DOI: 10.1186/s12938-024-01285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 10/29/2024] Open
Abstract
INTRODUCTION The probability density function (PDF) of the surface electromyogram (sEMG) depends on contraction force. This dependence, however, has so far been investigated by having the subject generate force at a few fixed percentages of MVC. Here, we examined how the shape of the sEMG PDF changes with contraction force when this force was gradually increased from zero. METHODS Voluntary surface EMG signals were recorded from the vastus lateralis of healthy subjects as force was increased in a continuous manner vs. in a step-wise fashion. The sEMG filling process was examined by measuring the EMG filling factor, computed from the non-central moments of the rectified sEMG signal. RESULTS (1) In 84% of the subjects, as contraction force increased from 0 to 10% MVC, the sEMG PDF shape oscillated back and forth between the semi-degenerate and the Gaussian distribution. (2) The PDF-force relation varied greatly among subjects for forces between 0 and ~ 10% MVC, but this variability was largely reduced for forces above 10% MVC. (3) The pooled analysis showed that, as contraction force gradually increased, the sEMG PDF evolved rapidly from the semi-degenerate towards the Laplacian distribution from 0 to 5% MVC, and then more slowly from the Laplacian towards the Gaussian distribution for higher forces. CONCLUSIONS The study demonstrated that the dependence of the sEMG PDF shape on contraction force can only be reliably assessed by gradually increasing force from zero, and not by performing a few constant-force contractions. The study also showed that the PDF-force relation differed greatly among individuals for contraction forces below 10% MVC, but this variability was largely reduced when force increased above 10% MVC.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Department of Electrical and Electronical Engineering, Public University of Navarra D.I.E.E., Campus de Arrosadía S/N, 31006, Pamplona, Spain.
| | - Armando Malanda
- Department of Electrical and Electronical Engineering, Public University of Navarra D.I.E.E., Campus de Arrosadía S/N, 31006, Pamplona, Spain
| | - Cristina Mariscal
- Department of Clinical Neurophysiology, Hospital Complex of Navarra, Pamplona, Spain
| | - Silvia Recalde
- Department of Electrical and Electronical Engineering, Public University of Navarra D.I.E.E., Campus de Arrosadía S/N, 31006, Pamplona, Spain
| | - Javier Navallas
- Department of Electrical and Electronical Engineering, Public University of Navarra D.I.E.E., Campus de Arrosadía S/N, 31006, Pamplona, Spain
| |
Collapse
|
2
|
Rodriguez‐Falces J, Etxaleku S, Trajano GS, Setuain I. The contribution of the tendon electrode to M-wave characteristics in the biceps brachii, vastus lateralis and tibialis anterior. Exp Physiol 2023; 108:1548-1559. [PMID: 37988249 PMCID: PMC10988423 DOI: 10.1113/ep091472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
In some compound muscle action potentials (M waves) recorded using the belly-tendon configuration, the tendon electrode makes a noticeable contribution to the M wave. However, this finding has only been demonstrated in some hand and foot muscles. Here, we assessed the contribution of the tendon potential to the amplitude of the vastus lateralis, biceps brachii and tibialis anterior M waves, and we also examined the role of this tendon potential in the shoulder-like feature appearing in most M waves. M waves were recorded separately at the belly and tendon locations of the vastus lateralis, biceps brachii and tibialis anterior from 38 participants by placing the reference electrode at a distant (contralateral) site. The amplitude of the M waves and the latency of their peaks and shoulders were measured. In the vastus lateralis, the tendon potential was markedly smaller in amplitude (∼75%) compared to the belly M wave (P = 0.001), whereas for the biceps brachii and tibialis anterior, the tendon and belly potentials had comparable amplitudes. In the vastus lateralis, the tendon potential showed a small positive peak coinciding in latency with the shoulder of the belly-tendon M wave, whilst in the biceps brachii and tibialis anterior, the tendon potential showed a clear negative peak which coincided in latency with the shoulder. The tendon potential makes a significant contribution to the belly-tendon M waves of the biceps brachii and tibialis anterior muscles, but little contribution to the vastus lateralis M waves. The shoulder observed in the belly-tendon M wave of the vastus lateralis is caused by the belly potential, the shoulder in the biceps brachii M wave is generated by the tendon potential, whereas the shoulder in the tibialis anterior M wave is caused by both the tendon and belly potentials. NEW FINDINGS: What is the central question of this study? Does a tendon electrode make a noticeable contribution to the belly-tendon M wave in the vastus lateralis, biceps brachii and tibialis anterior muscles? What is the main finding and its importance? Because the patellar tendon potential is small in amplitude, it hardly influences the amplitude and shape of the belly-tendon M wave of the vastus lateralis. However, for the biceps brachii and tibialis anterior muscles, the potentials at the tendon sites show a large amplitude, and thus have a great impact on the corresponding belly-tendon M waves.
Collapse
Affiliation(s)
- Javier Rodriguez‐Falces
- Department of Electrical and Electronical EngineeringPublic University of NavarraPamplonaSpain
| | - Saioa Etxaleku
- Clinical Research DepartmentTDN, Orthopedic Surgery and Advanced Rehabilitation CenterMutilvaSpain
| | - Gabriel S. Trajano
- Faculty of Health, School of Exercise and Nutrition SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Igor Setuain
- Clinical Research DepartmentTDN, Orthopedic Surgery and Advanced Rehabilitation CenterMutilvaSpain
- Department of Health SciencesPublic University of NavarrePamplonaSpain
| |
Collapse
|
3
|
Rodriguez-Falces J, Malanda A, Navallas J, Place N. M-wave changes caused by brief voluntary and stimulated isometric contractions. Eur J Appl Physiol 2023; 123:2087-2098. [PMID: 37202629 PMCID: PMC10460755 DOI: 10.1007/s00421-023-05228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/05/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Under isometric conditions, the increase in muscle force is accompanied by a reduction in the fibers' length. The effects of muscle shortening on the compound muscle action potential (M wave) have so far been investigated only by computer simulation. This study was undertaken to assess experimentally the M-wave changes caused by brief voluntary and stimulated isometric contractions. METHODS Two different methods of inducing muscle shortening under isometric condition were adopted: (1) applying a brief (1 s) tetanic contraction and (2) performing brief voluntary contractions of different intensities. In both methods, supramaximal stimulation was applied to the brachial plexus and femoral nerves to evoke M waves. In the first method, electrical stimulation (20 Hz) was delivered with the muscle at rest, whereas in the second, stimulation was applied while participants performed 5-s stepwise isometric contractions at 10, 20, 30, 40, 50, 60, 70, and 100% MVC. The amplitude and duration of the first and second M-wave phases were computed. RESULTS The main findings were: (1) on application of tetanic stimulation, the amplitude of the M-wave first phase decreased (~ 10%, P < 0.05), that of the second phase increased (~ 50%, P < 0.05), and the M-wave duration decreased (~ 20%, P < 0.05) across the first five M waves of the tetanic train and then plateaued for the subsequent responses; (2) when superimposing a single electrical stimulus on muscle contractions of increasing forces, the amplitude of the M-wave first phase decreased (~ 20%, P < 0.05), that of the second phase increased (~ 30%, P < 0.05), and M-wave duration decreased (~ 30%, P < 0.05) as force was raised from 0 to 60-70% MVC force. CONCLUSIONS The present results will help to identify the adjustments in the M-wave profile caused by muscle shortening and also contribute to differentiate these adjustments from those caused by muscle fatigue and/or changes in Na+-K+ pump activity.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Department of Electrical and Electronical Engineering, Public University of Navarra, Campus de Arrosadía s/n. 31006, Pamplona, Spain.
| | - Armando Malanda
- Department of Electrical and Electronical Engineering, Public University of Navarra, Campus de Arrosadía s/n. 31006, Pamplona, Spain
| | - Javier Navallas
- Department of Electrical and Electronical Engineering, Public University of Navarra, Campus de Arrosadía s/n. 31006, Pamplona, Spain
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Li X, Huang C, Lu Z, Wang I, Klein CS, Zhang L, Zhou P. Distribution of innervation zone and muscle fiber conduction velocity in the biceps brachii muscle. J Electromyogr Kinesiol 2022; 63:102637. [PMID: 35176686 PMCID: PMC8960364 DOI: 10.1016/j.jelekin.2022.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022] Open
Abstract
The spatial distributions of muscle innervation zone (IZ) and muscle fiber conduction velocity (CV) were examined in nine healthy young male participants. High-density surface electromyography (EMG) was collected from the biceps brachii muscle when subjects performed isometric elbow flexions at 20% to 80% of the maximal voluntary contraction (MVC). A total of 9498 samples of IZs were identified and CVs were calculated using the Radon transform. The center and width of IZ sample distribution were compared within four different force levels and six medial to lateral electrode column positions using repeated measures ANOVA and multiple comparison tests. Significant shifts of IZ center were observed in the medial columns (Columns 5, 6, and 7) compared with the lateral columns (Columns 3 and 4) (p < 0.05). Similarly, significant differences in the IZ width were found in Column 7 and 8 compared to Column 3 (p < 0.05). In contrast, muscle CV was unaffected by column position. Instead, muscle CV was faster at 40% and 80% MVC compared to 20% MVC (p < 0.05). The findings of this study add further insights into the physiological properties of the biceps brachii muscle.
Collapse
|
5
|
Rodriguez-Falces J, Place N. Sarcolemmal Excitability, M-Wave Changes, and Conduction Velocity During a Sustained Low-Force Contraction. Front Physiol 2021; 12:732624. [PMID: 34721063 PMCID: PMC8554155 DOI: 10.3389/fphys.2021.732624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
This study was undertaken to investigate whether sarcolemmal excitability is impaired during a sustained low-force contraction [10% maximal voluntary contraction (MVC)] by assessing muscle conduction velocity and also by analyzing separately the first and second phases of the muscle compound action potential (M wave). Twenty-one participants sustained an isometric knee extension of 10% MVC for 3min. M waves were evoked by supramaximal single shocks to the femoral nerve given at 10-s intervals. The amplitude, duration, and area of the first and second M-wave phases were computed. Muscle fiber conduction velocity, voluntary surface electromyographic (EMG), perceived effort, MVC force, peak twitch force, and temperature were also recorded. The main findings were: (1) During the sustained contraction, conduction velocity remained unchanged. (2) The amplitude of the M-wave first phase decreased for the first ~30s (−7%, p<0.05) and stabilized thereafter, whereas the second phase amplitude increased for the initial ~30s (+7%, p<0.05), before stabilizing. (3) Both duration and area decreased steeply during the first ~30s, and then more gradually for the rest of the contraction. (4) During the sustained contraction, perceived effort increased fivefold, whereas knee extension EMG increased by ~10%. (5) Maximal voluntary force and peak twitch force decreased (respectively, −9% and −10%, p<0.05) after the low-force contraction. Collectively, the present results indicate that sarcolemmal excitability is well preserved during a sustained 10% MVC task. A depression of the M-wave first phase during a low-force contraction can occur even in the absence of changes in membrane excitability. The development of fatigue during a low-force contraction can occur without alteration of membrane excitability.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Department of Electrical and Electronical Engineering, Public University of Navarre, Pamplona, Spain
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Huang C, Chen M, Li X, Zhang Y, Li S, Zhou P. Neurophysiological Factors Affecting Muscle Innervation Zone Estimation Using Surface EMG: A Simulation Study. BIOSENSORS-BASEL 2021; 11:bios11100356. [PMID: 34677312 PMCID: PMC8534086 DOI: 10.3390/bios11100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
Surface electromyography (EMG) recorded by a linear or 2-dimensional electrode array can be used to estimate the location of muscle innervation zones (IZ). There are various neurophysiological factors that may influence surface EMG and thus potentially compromise muscle IZ estimation. The objective of this study was to evaluate how surface-EMG-based IZ estimation might be affected by different factors, including varying degrees of motor unit (MU) synchronization in the case of single or double IZs. The study was performed by implementing a model simulating surface EMG activity. Three different MU synchronization conditions were simulated, namely no synchronization, medium level synchronization, and complete synchronization analog to M wave. Surface EMG signals recorded by a 2-dimensional electrode array were simulated from a muscle with single and double IZs, respectively. For each situation, the IZ was estimated from surface EMG and compared with the one used in the model for performance evaluation. For the muscle with only one IZ, the estimated IZ location from surface EMG was consistent with the one used in the model for all the three MU synchronization conditions. For the muscle with double IZs, at least one IZ was appropriately estimated from interference surface EMG when there was no MU synchronization. However, the estimated IZ was different from either of the two IZ locations used in the model for the other two MU synchronization conditions. For muscles with a single IZ, MU synchronization has little effect on IZ estimation from electrode array surface EMG. However, caution is required for multiple IZ muscles since MU synchronization might lead to false IZ estimation.
Collapse
Affiliation(s)
- Chengjun Huang
- Guangdong Work Injury Rehabilitation Center, Guangzhou 510970, China;
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Maoqi Chen
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
| | - Xiaoyan Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Ping Zhou
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
- Correspondence:
| |
Collapse
|
7
|
Beretta-Piccoli M, Cescon C, Barbero M, D’Antona G. Identification of muscle innervation zones using linear electrode arrays: a fundamental step to measure fibers conduction velocity. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1080/25765299.2021.1894731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Matteo Beretta-Piccoli
- Rehabilitation Research Laboratory, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Manno, Switzerland
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Corrado Cescon
- Rehabilitation Research Laboratory, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Manno, Switzerland
| | - Marco Barbero
- Rehabilitation Research Laboratory, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Manno, Switzerland
| | - Giuseppe D’Antona
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Department of Public Health, Experimental and Forensic medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Assessing redistribution of muscle innervation zones after spinal cord injuries. J Electromyogr Kinesiol 2021; 59:102550. [PMID: 34015700 DOI: 10.1016/j.jelekin.2021.102550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to examine the redistribution of neuromuscular junctions or innervation zones (IZs) after spinal cord injuries (SCI). Fifteen able-bodied subjects and 15 subjects with SCI (American Spinal Injury Association Impairment Scale A to D), participated in the study. Surface electromyography (EMG) signals were collected from the biceps brachii muscle by a customized linear electrode array when subjects generated maximal isometric voluntary contractions. The Radon transform was applied to detect the IZ locations in the multiple channel surface EMG signals which were differentiated between consecutive channels. The distribution of IZs was compared between the SCI and control groups using the student-t test. Statistical analysis disclosed a significantly wider range of IZs in the SCI group compared with the control group (SCI: 3.83 ± 1.32 IED, control: 2.83 ± 0. 87 IED, IED: inter-electrode distance, p < 0.05). No remarkable shifts of the center of the distribution were observed between the two groups (SCI: 9.23 ± 2.35 IED, control: 8.53 ± 2.33 IED, p = 0.42). Changes of IZ distribution in the paralyzed muscles could be associated with the complex neuromuscular reorganization after the SCI.
Collapse
|
9
|
Rodriguez-Falces J, Place N. Muscle fibre conduction velocity varies in opposite directions after short- vs. long-duration muscle contractions. Eur J Appl Physiol 2021; 121:1315-1325. [PMID: 33586038 DOI: 10.1007/s00421-021-04613-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/17/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The effects of muscle contractions on muscle fibre conduction velocity have normally been investigated for contractions of a given duration and intensity, with most studies being focused on the decline on conduction velocity during/after prolonged contractions. Herein, we perform a systematic analysis of the changes in conduction velocity after voluntary contractions of different durations and intensities. METHODS Conduction velocity was estimated in the vastus lateralis before and after knee extensor isometric maximal voluntary contractions (MVCs) of 1, 3, 6, 10, 30 and 60 s, and after brief (3 s) contractions at 10, 30, 50, 70, and 90% of MVC force. Measurements were made during the 10-min period following each contraction. RESULTS (1) Conduction velocity was increased immediately after (1 s) the MVCs of brief (≤ 10 s) duration (12 ± 2%, P < 0.05), and then returned rapidly (within 15 s) to control levels; (2) the extent of the increase in conduction velocity was similar after the 3-s, 6-s, and 10-s MVCs (P > 0.05); (3) the magnitude of the increase in conduction velocity after a brief contraction augmented with the intensity of the contraction (increases of 4.6, 7.7, 11.4, 14.8, and 15.2% for contractions at 10, 30, 50, 70, and 90% of MVC force, respectively); (4) conduction velocity was not decreased immediately after the 30-s MVC (P > 0.05); and (5) conduction velocity did not reach its minimum 1 s after the long (≥ 30 s) MVCs. CONCLUSIONS Brief (≤ 10 s) muscle contractions induce a short-term increase in conduction velocity, lasting 15 s, while long (≥ 30 s) contractions produce a long-term decrease in conduction velocity, lasting more than 2 min.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Department of Electrical and Electronical Engineering, Universidad Pública de Navarra D.I.E.E., Campus de Arrosadía s/n, 31006, Pamplona, Spain.
| | - Nicolas Place
- Department of Physiology, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Niazi IK, Kamavuako EN, Holt K, Janjua TAM, Kumari N, Amjad I, Haavik H. The Effect of Spinal Manipulation on the Electrophysiological and Metabolic Properties of the Tibialis Anterior Muscle. Healthcare (Basel) 2020; 8:healthcare8040548. [PMID: 33321904 PMCID: PMC7764559 DOI: 10.3390/healthcare8040548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
There is growing evidence showing that spinal manipulation increases muscle strength in healthy individuals as well as in people with some musculoskeletal and neurological disorders. However, the underlying mechanism by which spinal manipulation changes muscle strength is less clear. This study aimed to assess the effects of a single spinal manipulation session on the electrophysiological and metabolic properties of the tibialis anterior (TA) muscle. Maximum voluntary contractions (MVC) of the ankle dorsiflexors, high-density electromyography (HDsEMG), intramuscular EMG, and near-infrared spectroscopy (NIRS) were recorded from the TA muscle in 25 participants with low level recurring spinal dysfunction using a randomized controlled crossover design. The following outcomes: motor unit discharge rate (MUDR), strength (force at MVC), muscle conduction velocity (CV), relative changes in oxy- and deoxyhemoglobin were assessed pre and post a spinal manipulation intervention and passive movement control. Repeated measures ANOVA was used to assess within and between-group differences. Following the spinal manipulation intervention, there was a significant increase in MVC (p = 0.02; avg 18.87 ± 28.35%) and a significant increase in CV in both the isometric steady-state (10% of MVC) contractions (p < 0.01; avg 22.11 ± 11.69%) and during the isometric ramp (10% of MVC) contractions (p < 0.01; avg 4.52 ± 4.58%) compared to the control intervention. There were no other significant findings. The observed TA strength and CV increase, without changes in MUDR, suggests that the strength changes observed following spinal manipulation are, in part, due to increased recruitment of larger, higher threshold motor units. Further research needs to investigate the longer term and potential functional effects of spinal manipulation in various patients who may benefit from improved muscle function and greater motor unit recruitment.
Collapse
Affiliation(s)
- Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (K.H.); (N.K.); (I.A.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
- Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark;
- Correspondence: (I.K.N.); (H.H.)
| | - Ernest Nlandu Kamavuako
- Department of Informatics, King’s College London, London WC2R 2LS, UK;
- Faculté de Médecine, Université de Kindu, Kindu, Congo
| | - Kelly Holt
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (K.H.); (N.K.); (I.A.)
| | | | - Nitika Kumari
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (K.H.); (N.K.); (I.A.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
| | - Imran Amjad
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (K.H.); (N.K.); (I.A.)
- Faculty of Rehabilitation and Allied Sciences, Riphah International University, Islamabad 46000, Pakistan
| | - Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (K.H.); (N.K.); (I.A.)
- Correspondence: (I.K.N.); (H.H.)
| |
Collapse
|
11
|
Gao F, Cao Y, Zhang C, Zhang Y. A Preliminary Study of Effects of Channel Number and Location on the Repeatability of Motor Unit Number Index (MUNIX). Front Neurol 2020; 11:191. [PMID: 32256444 PMCID: PMC7090144 DOI: 10.3389/fneur.2020.00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Farong Gao
- School of Automation, Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
| | - Yueying Cao
- School of Automation, Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
| | - Chuan Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Yingchun Zhang
| |
Collapse
|
12
|
Recovery of the first and second phases of the M wave after prolonged maximal voluntary contractions. J Electromyogr Kinesiol 2020; 50:102385. [DOI: 10.1016/j.jelekin.2019.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/18/2019] [Accepted: 12/23/2019] [Indexed: 11/24/2022] Open
|
13
|
Huang C, Klein CS, Meng Z, Zhang Y, Li S, Zhou P. Innervation zone distribution of the biceps brachii muscle examined using voluntary and electrically-evoked high-density surface EMG. J Neuroeng Rehabil 2019; 16:73. [PMID: 31186009 PMCID: PMC6560814 DOI: 10.1186/s12984-019-0544-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND High density surface electromyography (EMG) can be used to estimate muscle innervation zones (IZ). The objective of this study was to compare the differences in the distribution of the biceps brachii (BB) IZ derived from voluntary contractions (VC) and electrical stimulation (ES) of the musculocutaneous nerve. METHODS Surface EMG signals were recorded from the medial and lateral BB with two 64-channel high density electrode matrices in eight healthy men. The surface EMG was recorded at different percentages of the maximal voluntary contraction (MVC) force (20-100% MVC) and at different percentages of the current needed to elicit a maximal M-wave (20-100% Imax). The IZs of the medial and lateral BB were identified from the EMG signals and expressed as a row number within a given medial-lateral column. RESULTS ES current intensity had no significant effect on the group mean IZ location (p > 0.05). However, The IZ during VC was located more proximally with increasing force (p < 0.05), likely due to muscle shortening. The position of the IZ varied slightly (by up to ~ 8 mm) in a medial-lateral direction under both contraction types, but this spatial effect was not significant. The IZ during ES and weak VC (20, 40% MVC) was similar (p > 0.05), but was more proximal in the latter than the former during 60-100% MVC (p < 0.05). CONCLUSION ES can be used to detect spatial differences in IZ location free of the confounding effects of muscle shortening and recruitment order of different sized motor units. The method may prove beneficial for locating the IZ in patients who lack voluntary control of their musculature.
Collapse
Affiliation(s)
- Chengjun Huang
- Guangdong Work Injury Rehabilitation Center, Guangzhou, Guangdong, China
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, USA
- TIRR Memorial Hermann Research Center, 1333B Moursund St, TIRR Research Building, Suite 326, Houston, TX, 77030, USA
| | - Cliff S Klein
- Guangdong Work Injury Rehabilitation Center, Guangzhou, Guangdong, China
| | - Zhaojian Meng
- Guangdong Work Injury Rehabilitation Center, Guangzhou, Guangdong, China
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, USA
- TIRR Memorial Hermann Research Center, 1333B Moursund St, TIRR Research Building, Suite 326, Houston, TX, 77030, USA
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, USA.
- TIRR Memorial Hermann Research Center, 1333B Moursund St, TIRR Research Building, Suite 326, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Zhang C, Dias N, He J, Zhou P, Li S, Zhang Y. Global Innervation Zone Identification With High-Density Surface Electromyography. IEEE Trans Biomed Eng 2019; 67:718-725. [PMID: 31150334 DOI: 10.1109/tbme.2019.2919906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The aim of this study is to compare the performance of three strategies in determining the global innervation zone (IZ) distribution. METHODS High-density surface electromyography was recorded from the biceps brachii muscle of seven healthy subjects under isometric voluntary contractions at 20%, 50%, and 100% of the maximal voluntary contraction and supramaximal musculocutaneous nerve stimulations. IZs were detected: first, by visual identification in a column-specific manner (IZ-1D); second, based on decomposed bipolar mapping of motor unit action potentials (IZ-2D); and third, by source imaging in the three-dimensional muscle space (IZ-3D). RESULTS All three IZ detection approaches have exhibited excellent trial-to-trial repeatability. Consistent IZ results were found in the axial direction of the arm across all three approaches, yet a difference was observed in the mediolateral direction. CONCLUSIONS Among all three approaches, IZ-3D is capable of providing the most comprehensive information regarding the global IZ distribution, while maintaining high consistency with IZ-1D and IZ-2D results. SIGNIFICANCE IZ-3D approach can be a potential tool for global IZ imaging, which is critical to the clinical diagnosis and treatment of neuromuscular disorders.
Collapse
|
15
|
Motor unit innervation zone localization based on robust linear regression analysis. Comput Biol Med 2019; 106:65-70. [PMID: 30684784 DOI: 10.1016/j.compbiomed.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 11/23/2022]
Abstract
With the aim of developing a flexible and reliable procedure for superficial muscle innervation zone (IZ) localization, we proposed a method to estimate IZ location using surface electromyogram (EMG) based on robust linear regression. Regression lines were used to model the bidirectional propagation pattern of a single motor unit action potential (MUAP) and visualize the trajectory of the MUAP propagation. IZ localization was performed by identifying the origin of the bidirectional MUAP propagation. Robust linear regression and MUAP peak detection, combined with propagation phase reversal identification, may provide an efficient way to estimate IZ location. Our method offers high resolution in locating IZs based on simulation studies and experimental tests. Furthermore, our method is flexible and may also be applied using a relatively small number of EMG channels. A comparative study of the proposed method with the cross-correlation method for IZ localization was conducted. The results obtained with simulated MUAPs and measured spontaneous MUAPs in the biceps brachii muscle in six subjects (four males and two females, 57 ± 10 years old) with amyotrophic lateral sclerosis (ALS). Our method achieved estimation performance comparable to that obtained by using the cross-correlation method but with higher resolution. This study provides an accurate and practical method to estimate IZ location.
Collapse
|
16
|
Rodriguez-Falces J, Place N. Sarcolemmal membrane excitability during repeated intermittent maximal voluntary contractions. Exp Physiol 2018; 104:136-148. [PMID: 30357996 DOI: 10.1113/ep087218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is impaired membrane excitability reflected by an increase or by a decrease in M-wave amplitude? What is the main finding and its importance? The magnitude of the M-wave first and second phases changed in completely different ways during intermittent maximal voluntary contractions, leading to the counterintuitive conclusion that it is an increase (and not a decrease) of the M-wave first phase that reflects impaired membrane excitability. ABSTRACT The study was undertaken to investigate separately the changes in the first and second phases of the muscle compound action potential (M-wave) during 4 min of intermittent maximal voluntary contractions (MVCs) of the quadriceps. M-waves were evoked by supramaximal single electrical stimulation to the femoral nerve delivered in the resting periods between 48 successive MVCs of 3 s. The amplitude, duration and area of the M-wave first and second phases were measured separately, together with muscle conduction velocity and MVC force. During the intermittent MVCs, the amplitude of the M-wave first phase increased uninterruptedly for the first 3 min (12-16%, P < 0.05) and stabilized thereafter, whereas the second phase initially increased for 55-75 s (11-22%, P < 0.05), but decreased subsequently. The enlargement of the first phase occurred in parallel with an increase in its duration, and concomitantly with a decline in conduction velocity (maximal cross-correlations, 0.89-0.97; time lag, 0 s). Also, a significant temporal association was found between the amplitude of the first phase and MVC force (time lag, 0 s; maximal cross-correlations, 0.85-0.97). Conversely, there was no temporal association between the second phase amplitude and conduction velocity or MVC force (time lag, 73-117 s; maximal cross-correlations, 0.65-0.77). It is concluded that the enlargement of the M-wave first phase is the electrical manifestation of impaired muscle membrane excitability. The results highlight the importance of independently analysing the first and second phases, as only the first phase can be used reliably to detect changes in membrane excitability, while the second might be affected by muscle architecture.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Nasrabadi R, Izanloo Z, Sharifnezad A, Hamedinia MR, Hedayatpour N. Muscle fiber conduction velocity of the vastus medilais and lateralis muscle after eccentric exercise induced-muscle damage. J Electromyogr Kinesiol 2018; 43:118-126. [PMID: 30273919 DOI: 10.1016/j.jelekin.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022] Open
Abstract
Change in muscle fiber conduction velocity (MFCV) has been reported after eccentric exercise induces muscle fiber damage, most likely due to a change in membrane permeability of the injured fiber. The extent of damage to the muscle fiber depends on the morphological and architectural characteristics of the muscle fibers. Morphological and architectural characteristics of the VMO muscle fibers are different from VL muscle. Thus, it is expected that eccentric exercise of quadriceps muscle results in a non-uniform fiber damage within the VMO and VL muscle and, as a consequence, non-uniform changes in membrane excitability and conduction velocity. The aim of the study was to investigate MFCV of the VMO and VL muscles before and 24 h after eccentric exercise. Multichannel surface EMG signals were concurrently recorded from the right VMO and VL muscles of 15 healthy men during sustained isometric contractions at 50% of the maximal force. Maximal voluntary force significantly reduced after eccentric exercise with respect to the pre-exercise condition (P < 0.0001). MFCV decreased over time during the sustained contractions at faster rates when assessed 24 h after exercise (VMO = -26.1; VL = -20.1) with respect to the pre-exercise condition (VMO = -9.1; VL = -13.7, P < 0.0001). Moreover, VMO showed a greater rate of reduction in MFCV over sustained contraction (26.1 ± 10.7%) in comparison with VL muscle (20.1 ± 8.5%, P < 0.025) 24 h after eccentric exercise. The result indicates that eccentric exercise contributes to a larger reduction in MFCV within the VMO muscle as compared to the VL muscle. This may abolish the ability of VMO to counteract the lateral pull of the VL muscle during knee extension, thereby leaving the knee complex more vulnerable to injury.
Collapse
Affiliation(s)
- Razieh Nasrabadi
- Department of Sports Sciences, Islamic Azad University of Bojnourd, Iran
| | - Zahra Izanloo
- Center for Biomechanics and Motor Control (BMC), Department of Sports Sciences, University of Bojnord, Bojnord, Iran
| | - Ali Sharifnezad
- Department of Sports Biomechanics, Sports Sciences Research Institute of Iran, Iran
| | | | - Nosratollah Hedayatpour
- Center for Biomechanics and Motor Control (BMC), Department of Sports Sciences, University of Bojnord, Bojnord, Iran.
| |
Collapse
|
18
|
Rodriguez-Falces J, Place N. End-of-Fiber Signals Strongly Influence the First and Second Phases of the M Wave in the Vastus Lateralis: Implications for the Study of Muscle Excitability. Front Physiol 2018; 9:162. [PMID: 29568271 PMCID: PMC5852100 DOI: 10.3389/fphys.2018.00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
It has been recurrently observed that, for compound muscle action potentials (M wave) recorded over the innervation zone of the vastus lateralis, the descending portion of the first phase generally shows an “inflection” or “shoulder.” We sought to clarify the electrical origin of this shoulder-like feature and examine its implications. M waves evoked by maximal single shocks to the femoral nerve were recorded in monopolar and bipolar configurations from 126 individuals using classical (10-mm recording diameter, 20-mm inter-electrode distance) electrodes and from eight individuals using small electrodes arranged in a linear array. The changes of the M-wave waveform at different positions along the muscle fibers' direction were examined. The shoulder was identified more frequently in monopolar (97%) than in bipolar (46%) M waves. The shoulder of M waves recorded at different distances from the innervation zone had the same latency. Furthermore, the shoulder of the M wave recorded over the innervation zone coincided in latency with the positive peak of that recorded beyond the muscle. The positive phase of the M wave detected 20 mm away from the innervation zone was essentially composed of non-propagating components. The shoulder-like feature in monopolar and bipolar M waves results from the termination of action potentials at the superficial aponeurosis of the vastus lateralis. We conclude that, only the amplitude of the first phase, and not the second, of M waves recorded monopolarly and/or bipolarly in close proximity to the innervation zone can be used reliably to monitor possible changes in muscle membrane excitability.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Carriou V, Boudaoud S, Laforet J. Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model. Med Biol Eng Comput 2018; 56:1459-1473. [PMID: 29359257 DOI: 10.1007/s11517-018-1784-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/01/2018] [Indexed: 11/25/2022]
Abstract
Nowadays, bio-reliable modeling of muscle contraction is becoming more accurate and complex. This increasing complexity induces a significant increase in computation time which prevents the possibility of using this model in certain applications and studies. Accordingly, the aim of this work is to significantly reduce the computation time of high-density surface electromyogram (HD-sEMG) generation. This will be done through a new model of motor unit (MU)-specific electrical source based on the fibers composing the MU. In order to assess the efficiency of this approach, we computed the normalized root mean square error (NRMSE) between several simulations on single generated MU action potential (MUAP) using the usual fiber electrical sources and the MU-specific electrical source. This NRMSE was computed for five different simulation sets wherein hundreds of MUAPs are generated and summed into HD-sEMG signals. The obtained results display less than 2% error on the generated signals compared to the same signals generated with fiber electrical sources. Moreover, the computation time of the HD-sEMG signal generation model is reduced to about 90% compared to the fiber electrical source model. Using this model with MU electrical sources, we can simulate HD-sEMG signals of a physiological muscle (hundreds of MU) in less than an hour on a classical workstation. Graphical Abstract Overview of the simulation of HD-sEMG signals using the fiber scale and the MU scale. Upscaling the electrical source to the MU scale reduces the computation time by 90% inducing only small deviation of the same simulated HD-sEMG signals.
Collapse
Affiliation(s)
- Vincent Carriou
- CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu, Sorbonne University, Universite de Technologie de Compiegne, CS 60203, Compiegne, France.
| | - Sofiane Boudaoud
- CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu, Sorbonne University, Universite de Technologie de Compiegne, CS 60203, Compiegne, France
| | - Jeremy Laforet
- CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu, Sorbonne University, Universite de Technologie de Compiegne, CS 60203, Compiegne, France
| |
Collapse
|
20
|
Rodriguez-Falces J, Place N. Determinants, analysis and interpretation of the muscle compound action potential (M wave) in humans: implications for the study of muscle fatigue. Eur J Appl Physiol 2017; 118:501-521. [DOI: 10.1007/s00421-017-3788-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
|
21
|
Martinez-Valdes E, Negro F, Laine CM, Falla D, Mayer F, Farina D. Tracking motor units longitudinally across experimental sessions with high-density surface electromyography. J Physiol 2017; 595:1479-1496. [PMID: 28032343 PMCID: PMC5330923 DOI: 10.1113/jp273662] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/15/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders. We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high-density surface electromyography. The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity. These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions. The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. ABSTRACT A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high-density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre-post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be tracked across two sessions (1 and 2 weeks apart), for the vastus medialis and vastus lateralis, respectively. Moreover, the properties of the tracked MUs were more reliable across sessions than those of the full set of identified MUs (intra-class correlation coefficients ranged between 0.63-0.99 and 0.39-0.95, respectively). In Experiment II, ∼40% of the MUs could be tracked before and after the training intervention and training-induced changes in MU conduction velocity had an effect size of 2.1 (tracked MUs) and 1.5 (group of all identified motor units). These results show the possibility of monitoring MU properties longitudinally to document the effect of interventions or the progression of neuromuscular disorders.
Collapse
Affiliation(s)
- E Martinez-Valdes
- Department of Sports Medicine and Sports Orthopaedics, University of Potsdam, Potsdam, Germany
| | - F Negro
- Institute of Neurorehabilitation Systems, Bernstein Focus Neurotechnology Göttingen (BFNT), Bernstein Centre for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - C M Laine
- Institute of Neurorehabilitation Systems, Bernstein Focus Neurotechnology Göttingen (BFNT), Bernstein Centre for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - D Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - F Mayer
- Department of Sports Medicine and Sports Orthopaedics, University of Potsdam, Potsdam, Germany
| | - D Farina
- Institute of Neurorehabilitation Systems, Bernstein Focus Neurotechnology Göttingen (BFNT), Bernstein Centre for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,Department of Bioengineering, Imperial College London, Royal School of Mines, London, UK
| |
Collapse
|
22
|
Rodriguez-Falces J. A new method for the localization of the innervation zone based on monopolar surface-detected potentials. J Electromyogr Kinesiol 2017; 35:47-60. [DOI: 10.1016/j.jelekin.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022] Open
|
23
|
Harrison AP. A more precise, repeatable and diagnostic alternative to surface electromyography - an appraisal of the clinical utility of acoustic myography. Clin Physiol Funct Imaging 2017; 38:312-325. [PMID: 28251802 DOI: 10.1111/cpf.12417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/11/2017] [Indexed: 11/27/2022]
Abstract
Acoustic myography (AMG) enables a detailed and accurate measurement of those muscles involved in a particular movement and is independent of electrical signals between the nerve and muscle, measuring solely muscle contractions, unlike surface electromyography (sEMG). With modern amplifiers and digital sound recording systems, measurements during physical activity both inside and outside a laboratory setting are now possible and accurate. Muscle sound gives a representation of the work of each muscle group during a complex movement, and under certain forms of movement even reveals both concentric and eccentric activity, something that sEMG is incapable of. Recent findings suggest that AMG has a number of advantages over sEMG, being simple to use, accurate and repeatable as well as being intuitive to interpret. The AMG signal comprises three physiological parameters, namely efficiency/coordination (E-score), spatial summation (S-score) and temporal summation (T-score). It is concluded that modern AMG units have the potential to accurately assess patients with neuromuscular and musculoskeletal complaints in hospital clinics, home monitoring situations as well as sports settings.
Collapse
Affiliation(s)
- Adrian P Harrison
- Department of Veterinary Clinical & Animal Sciences, Faculty of Health & Medical Sciences, Copenhagen University, Frederiksberg C, Denmark
| |
Collapse
|
24
|
Al Harrach M, Carriou V, Boudaoud S, Laforet J, Marin F. Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: A simulation study. Comput Biol Med 2017; 83:34-47. [PMID: 28219032 DOI: 10.1016/j.compbiomed.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
The relationship between the surface Electromyogram (sEMG) signal and the force of an individual muscle is still ambiguous due to the complexity of experimental evaluation. However, understanding this relationship should be useful for the assessment of neuromuscular system in healthy and pathological contexts. In this study, we present a global investigation of the factors governing the shape of this relationship. Accordingly, we conducted a focused sensitivity analysis of the sEMG/force relationship form with respect to neural, functional and physiological parameters variation. For this purpose, we used a fast generation cylindrical model for the simulation of an 8×8 High Density-sEMG (HD-sEMG) grid and a twitch based force model for the muscle force generation. The HD-sEMG signals as well as the corresponding force signals were simulated in isometric non-fatiguing conditions and were based on the Biceps Brachii (BB) muscle properties. A total of 10 isometric constant contractions of 5s were simulated for each configuration of parameters. The Root Mean Squared (RMS) value was computed in order to quantify the sEMG amplitude. Then, an image segmentation method was used for data fusion of the 8×8 RMS maps. In addition, a comparative study between recent modeling propositions and the model proposed in this study is presented. The evaluation was made by computing the Normalized Root Mean Squared Error (NRMSE) of their fitting to the simulated relationship functions. Our results indicated that the relationship between the RMS (mV) and muscle force (N) can be modeled using a 3rd degree polynomial equation. Moreover, it appears that the obtained coefficients are patient-specific and dependent on physiological, anatomical and neural parameters.
Collapse
Affiliation(s)
- Mariam Al Harrach
- Sorbonne Universites, Universite de Technologie de Compiegne, UMR CNRS 7338 Biomecanique et Bioingenieurie (BMBI), Centre de recherche Royallieu, CS 60203 Compiegne cedex, France.
| | - Vincent Carriou
- Sorbonne Universites, Universite de Technologie de Compiegne, UMR CNRS 7338 Biomecanique et Bioingenieurie (BMBI), Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
| | - Sofiane Boudaoud
- Sorbonne Universites, Universite de Technologie de Compiegne, UMR CNRS 7338 Biomecanique et Bioingenieurie (BMBI), Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
| | - Jeremy Laforet
- Sorbonne Universites, Universite de Technologie de Compiegne, UMR CNRS 7338 Biomecanique et Bioingenieurie (BMBI), Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
| | - Frederic Marin
- Sorbonne Universites, Universite de Technologie de Compiegne, UMR CNRS 7338 Biomecanique et Bioingenieurie (BMBI), Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
| |
Collapse
|
25
|
Marateb HR, Farahi M, Rojas M, Mañanas MA, Farina D. Detection of Multiple Innervation Zones from Multi-Channel Surface EMG Recordings with Low Signal-to-Noise Ratio Using Graph-Cut Segmentation. PLoS One 2016; 11:e0167954. [PMID: 27978535 PMCID: PMC5158322 DOI: 10.1371/journal.pone.0167954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/23/2016] [Indexed: 11/24/2022] Open
Abstract
Knowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorded to assess physiological and morphological characteristics of contracting muscles. However, it is not often possible to record signals of high quality. Moreover, muscles could have multiple IZs, which should all be identified. We designed a fully-automatic algorithm based on the enhanced image Graph-Cut segmentation and morphological image processing methods to identify up to five IZs in 60-ms intervals of very-low to moderate quality sEMG signal detected with multi-channel electrodes (20 bipolar channels with Inter Electrode Distance (IED) of 5 mm). An anisotropic multilayered cylinder model was used to simulate 750 sEMG signals with signal-to-noise ratio ranging from -5 to 15 dB (using Gaussian noise) and in each 60-ms signal frame, 1 to 5 IZs were included. The micro- and macro- averaged performance indices were then reported for the proposed IZ detection algorithm. In the micro-averaging procedure, the number of True Positives, False Positives and False Negatives in each frame were summed up to generate cumulative measures. In the macro-averaging, on the other hand, precision and recall were calculated for each frame and their averages are used to determine F1-score. Overall, the micro (macro)-averaged sensitivity, precision and F1-score of the algorithm for IZ channel identification were 82.7% (87.5%), 92.9% (94.0%) and 87.5% (90.6%), respectively. For the correctly identified IZ locations, the average bias error was of 0.02±0.10 IED ratio. Also, the average absolute conduction velocity estimation error was 0.41±0.40 m/s for such frames. The sensitivity analysis including increasing IED and reducing interpolation coefficient for time samples was performed. Meanwhile, the effect of adding power-line interference and using other image interpolation methods on the deterioration of the performance of the proposed algorithm was investigated. The average running time of the proposed algorithm on each 60-ms sEMG frame was 25.5±8.9 (s) on an Intel dual-core 1.83 GHz CPU with 2 GB of RAM. The proposed algorithm correctly and precisely identified multiple IZs in each signal epoch in a wide range of signal quality and is thus a promising new offline tool for electrophysiological studies.
Collapse
Affiliation(s)
- Hamid Reza Marateb
- The Biomedical Engineering Department, Engineering Faculty, the University of Isfahan, Isfahan, Iran
- Department of Automatic Control, Biomedical Engineering Research Center, Universitat Politècnica de Catalunya. BarcelonaTech (UPC), Barcelona, Spain
- * E-mail:
| | - Morteza Farahi
- The Biomedical Engineering Department, Engineering Faculty, the University of Isfahan, Isfahan, Iran
| | - Monica Rojas
- Department of Automatic Control, Biomedical Engineering Research Center, Universitat Politècnica de Catalunya. BarcelonaTech (UPC), Barcelona, Spain
- Department of Bioengineering, Universidad El Bosque, Bogotá, Colombia
| | - Miguel Angel Mañanas
- Department of Automatic Control, Biomedical Engineering Research Center, Universitat Politècnica de Catalunya. BarcelonaTech (UPC), Barcelona, Spain
| | - Dario Farina
- Department of NeuroRehabilitation Engineering, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
26
|
Sanchez B, Pacheck A, Rutkove SB. Guidelines to electrode positioning for human and animal electrical impedance myography research. Sci Rep 2016; 6:32615. [PMID: 27585740 PMCID: PMC5009322 DOI: 10.1038/srep32615] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/10/2016] [Indexed: 12/14/2022] Open
Abstract
The positioning of electrodes in electrical impedance myography (EIM) is critical for accurately assessing disease progression and effectiveness of treatment. In human and animal trials for neuromuscular disorders, inconsistent electrode positioning adds errors to the muscle impedance. Despite its importance, how the reproducibility of resistance and reactance, the two parameters that define EIM, are affected by changes in electrode positioning remains unknown. In this paper, we present a novel approach founded on biophysical principles to study the reproducibility of resistance and reactance to electrode misplacements. The analytical framework presented allows the user to quantify a priori the effect on the muscle resistance and reactance using only one parameter: the uncertainty placing the electrodes. We also provide quantitative data on the precision needed to position the electrodes and the minimum muscle length needed to achieve a pre-specified EIM reproducibility. The results reported here are confirmed with finite element model simulations and measurements on five healthy subjects. Ultimately, our data can serve as normative values to enhance the reliability of EIM as a biomarker and facilitate comparability of future human and animal studies.
Collapse
Affiliation(s)
- Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215-5491, USA
| | - Adam Pacheck
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215-5491, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215-5491, USA
| |
Collapse
|
27
|
Roberts T, De Graaf JB, Nicol C, Hervé T, Fiocchi M, Sanaur S. Flexible Inkjet-Printed Multielectrode Arrays for Neuromuscular Cartography. Adv Healthc Mater 2016; 5:1462-70. [PMID: 27125475 DOI: 10.1002/adhm.201600108] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/14/2016] [Indexed: 11/07/2022]
Abstract
UNLABELLED Flexible Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PEDOT PSS) conductive-polymer multielectrode arrays (MEAs) are fabricated without etching or aggressive lift-off processes, only by additive solution processes. Inkjet printing technology has several advantages, such as a customized design and a rapid realization time, adaptability to different patients and to different applications. In particular, inkjet printing technology, as additive and "contactless" technology, can be easily inserted into various technological fabrication steps on different substrates at low cost. In vivo electrochemical impedance spectroscopy measurements show the time stability of such MEAs. An equivalent circuit model is established for such flexible cutaneous MEAs. It is shown that the charge transfer resistance remains the same, even two months after fabrication. Surface electromyography and electrocardiography measurements show that the PEDOT PSS MEAs record electrophysiological activity signals that are comparable to those obtained with unitary Ag/AgCl commercial electrodes. Additionally, such MEAs offer parallel and simultaneous recordings on multiple locations at high surface density. It also proves its suitability to reconstruct an innervation zone map and opens new perspectives for a better control of amputee's myoelectric prostheses. The employment of additive technologies such as inkjet printing suggests that the integration of multifunctional sensors can improve the performances of ultraflexible brain-computer interfaces.
Collapse
Affiliation(s)
- Timothée Roberts
- Institut des Sciences du Mouvement CNRS Aix Marseille Université ISM UMR 7287 163, Avenue de Luminy, CP, 910 13288 Marseille Cedex 9 France
- Microvitae Technologies Hôtel Technologique Europarc Sainte Victoire Bâtiment 6 Route de Valbrillant 13590 Meyreuil France
| | - Jozina B. De Graaf
- Institut des Sciences du Mouvement CNRS Aix Marseille Université ISM UMR 7287 163, Avenue de Luminy, CP, 910 13288 Marseille Cedex 9 France
| | - Caroline Nicol
- Institut des Sciences du Mouvement CNRS Aix Marseille Université ISM UMR 7287 163, Avenue de Luminy, CP, 910 13288 Marseille Cedex 9 France
| | - Thierry Hervé
- Microvitae Technologies Hôtel Technologique Europarc Sainte Victoire Bâtiment 6 Route de Valbrillant 13590 Meyreuil France
| | - Michel Fiocchi
- Department of Bioelectronics Ecole Nationale Supérieure des Mines CMP‐EMSE 880, route de Mimet 13541 Gardanne France
| | - Sébastien Sanaur
- Department of Bioelectronics Ecole Nationale Supérieure des Mines CMP‐EMSE 880, route de Mimet 13541 Gardanne France
| |
Collapse
|
28
|
Martinez-Valdes E, Laine CM, Falla D, Mayer F, Farina D. High-density surface electromyography provides reliable estimates of motor unit behavior. Clin Neurophysiol 2015; 127:2534-41. [PMID: 26778718 DOI: 10.1016/j.clinph.2015.10.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/29/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To assess the intra- and inter-session reliability of estimates of motor unit behavior and muscle fiber properties derived from high-density surface electromyography (HDEMG). METHODS Ten healthy subjects performed submaximal isometric knee extensions during three recording sessions (separate days) at 10%, 30%, 50% and 70% of their maximum voluntary effort. The discharge timings of motor units of the vastus lateralis and medialis muscles were automatically identified from HDEMG by a decomposition algorithm. We characterized the number of detected motor units, their discharge rates, the coefficient of variation of their inter-spike intervals (CoVisi), the action potential conduction velocity and peak-to-peak amplitude. Reliability was assessed for each motor unit characteristics by intra-class correlation coefficient (ICC). Additionally, a pulse-to-noise ratio (PNR) was calculated, to verify the accuracy of the decomposition. RESULTS Good to excellent reliability within and between sessions was found for all motor unit characteristics at all force levels (ICCs>0.8), with the exception of CoVisi that presented poor reliability (ICC<0.6). PNR was high and similar for both muscles with values ranging between 45.1 and 47.6dB (accuracy>95%). CONCLUSION Motor unit features can be assessed non-invasively and reliably within and across sessions over a wide range of force levels. SIGNIFICANCE These results suggest that it is possible to characterize motor units in longitudinal intervention studies.
Collapse
Affiliation(s)
- E Martinez-Valdes
- Department of Sports Medicine and Sports Orthopaedics, University of Potsdam, Potsdam, Germany
| | - C M Laine
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen (BFNT), Bernstein Centre for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - D Falla
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen (BFNT), Bernstein Centre for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany; Pain Clinic, Center for Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Göttingen, Göttingen, Germany
| | - F Mayer
- Department of Sports Medicine and Sports Orthopaedics, University of Potsdam, Potsdam, Germany
| | - D Farina
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen (BFNT), Bernstein Centre for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany.
| |
Collapse
|
29
|
Abstract
UNLABELLED Neural control of synergist muscles is not well understood. Presumably, each muscle in a synergistic group receives some unique neural drive and some drive that is also shared in common with other muscles in the group. In this investigation, we sought to characterize the strength, frequency spectrum, and force dependence of the neural drive to the human vastus lateralis and vastus medialis muscles during the production of isometric knee extension forces at 10 and 30% of maximum voluntary effort. High-density surface electromyography recordings were decomposed into motor unit action potentials to examine the neural drive to each muscle. Motor unit coherence analysis was used to characterize the total neural drive to each muscle and the drive shared between muscles. Using a novel approach based on partial coherence analysis, we were also able to study specifically the neural drive unique to each muscle (not shared). The results showed that the majority of neural drive to the vasti muscles was a cross-muscle drive characterized by a force-dependent strength and bandwidth. Muscle-specific neural drive was at low frequencies (<5 Hz) and relatively weak. Frequencies of neural drive associated with afferent feedback (6-12 Hz) and with descending cortical input (∼20 Hz) were almost entirely shared by the two muscles, whereas low-frequency (<5 Hz) drive comprised shared (primary) and muscle-specific (secondary) components. This study is the first to directly investigate the extent of shared versus independent control of synergist muscles at the motor neuron level. SIGNIFICANCE STATEMENT Precisely how the nervous system coordinates the activity of synergist muscles is not well understood. One possibility is that muscles of a synergy share a common neural drive. In this study, we directly compared the relative strength of shared versus independent neural drive to synergistically activated thigh muscles in humans. The results of this analysis support the notion that synergistically activated muscles share most of their neural drive. Scientifically, this study addressed an important gap in our current understanding of how neural drive is delivered to synergist muscles. We have also demonstrated the feasibility of a novel approach to the study of muscle synergies based on partial coherence analysis of motor unit activity.
Collapse
|
30
|
Martinez-Valdes E, Guzman-Venegas RA, Silvestre RA, Macdonald JH, Falla D, Araneda OF, Haichelis D. Electromyographic adjustments during continuous and intermittent incremental fatiguing cycling. Scand J Med Sci Sports 2015; 26:1273-1282. [DOI: 10.1111/sms.12578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- E. Martinez-Valdes
- University Outpatient Clinic; Sports Medicine and Sports Orthopaedics; University of Potsdam; Potsdam Germany
| | - R. A. Guzman-Venegas
- Facultad de Medicina; Escuela de Kinesiología; Universidad de Los Andes; Santiago Chile
| | - R. A. Silvestre
- Faculty of Medicine; School of Kinesiology; Mayor University; Santiago Chile
| | - J. H. Macdonald
- School of Sport, Health and Exercise Sciences; Bangor University; Bangor UK
| | - D. Falla
- Department of Neurorehabilitation Engineering; Bernstein Focus Neurotechnology Göttingen; Bernstein Center for Computational Neuroscience; University Medical Center; Göttingen Germany
| | - O. F. Araneda
- Facultad de Medicina; Escuela de Kinesiología; Universidad de Los Andes; Santiago Chile
| | - D. Haichelis
- Instituto de Ciencias del Ejercicio; Universidad Santo Tomás; Santiago Chile
| |
Collapse
|
31
|
Piitulainen H, Botter A, Bourguignon M, Jousmäki V, Hari R. Spatial variability in cortex-muscle coherence investigated with magnetoencephalography and high-density surface electromyography. J Neurophysiol 2015; 114:2843-53. [PMID: 26354317 DOI: 10.1152/jn.00574.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022] Open
Abstract
Cortex-muscle coherence (CMC) reflects coupling between magnetoencephalography (MEG) and surface electromyography (sEMG), being strongest during isometric contraction but absent, for unknown reasons, in some individuals. We used a novel nonmagnetic high-density sEMG (HD-sEMG) electrode grid (36 mm × 12 mm; 60 electrodes separated by 3 mm) to study effects of sEMG recording site, electrode derivation, and rectification on the strength of CMC. Monopolar sEMG from right thenar and 306-channel whole-scalp MEG were recorded from 14 subjects during 4-min isometric thumb abduction. CMC was computed for 60 monopolar, 55 bipolar, and 32 Laplacian HD-sEMG derivations, and two derivations were computed to mimic "macroscopic" monopolar and bipolar sEMG (electrode diameter 9 mm; interelectrode distance 21 mm). With unrectified sEMG, 12 subjects showed statistically significant CMC in 91-95% of the HD-sEMG channels, with maximum coherence at ∼25 Hz. CMC was about a fifth stronger for monopolar than bipolar and Laplacian derivations. Monopolar derivations resulted in most uniform CMC distributions across the thenar and in tightest cortical source clusters in the left rolandic hand area. CMC was 19-27% stronger for HD-sEMG than for "macroscopic" monopolar or bipolar derivations. EMG rectification reduced the CMC peak by a quarter, resulted in a more uniformly distributed CMC across the thenar, and provided more tightly clustered cortical sources than unrectifed sEMGs. Moreover, it revealed CMC at ∼12 Hz. We conclude that HD-sEMG, especially with monopolar derivation, can facilitate detection of CMC and that individual muscle anatomy cannot explain the high interindividual CMC variability.
Collapse
Affiliation(s)
- Harri Piitulainen
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, and MEG Core and Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland; and
| | - Alberto Botter
- Laboratory of Engineering of Neuromuscular System and Motor Rehabilitation, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy
| | - Mathieu Bourguignon
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, and MEG Core and Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland; and
| | - Veikko Jousmäki
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, and MEG Core and Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland; and
| | - Riitta Hari
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, and MEG Core and Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland; and
| |
Collapse
|
32
|
Ye X, Beck TW, Wages NP. Prolonged passive static stretching-induced innervation zone shift in biceps brachii. Appl Physiol Nutr Metab 2015; 40:482-8. [DOI: 10.1139/apnm-2014-0546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the influence of a bout of repeated and prolonged passive static stretching on the innervation zone (IZ) location of the human biceps brachii muscle. Eleven men performed 12 sets of 100-s passive stretches on their biceps brachii. Before (Pre) and immediately after (Post) the stretching intervention, isometric strength was tested during the maximal voluntary contractions (MVCs) of the forearm flexors. The subjects also performed several separate isometric forearm flexion muscle actions at 30%, 50%, and 70% of their predetermined MVCs for examining the locations of the IZ at different contraction intensities. The IZ was identified through multi-channel surface electromyographic (EMG) recordings from a linear electrode array. The stretching intervention induced an average of 10% isometric strength loss for the forearm flexors (mean ± SD: Pre-MVC vs. Post-MVC = 332.12 ± 59.40 N vs. 299.53 ± 70.51 N; p < 0.001). In addition, the average IZ shift was nearly 4.5 mm in average in the proximal direction. However, this shift was not specific to the contraction intensity. We believe that the IZ shift was caused by the elongation of the entire muscle-tendon unit in the proximal direction. Therefore, caution should be taken when using surface EMG technique to examine possible changes in the EMG variables after a stretching protocol, as these variables can be contaminated by the shift of the IZ.
Collapse
Affiliation(s)
- Xin Ye
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA
| | - Travis W. Beck
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA
| | - Nathan P. Wages
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
33
|
Beretta Piccoli M, Rainoldi A, Heitz C, Wüthrich M, Boccia G, Tomasoni E, Spirolazzi C, Egloff M, Barbero M. Innervation zone locations in 43 superficial muscles: Toward a standardization of electrode positioning. Muscle Nerve 2013; 49:413-21. [DOI: 10.1002/mus.23934] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matteo Beretta Piccoli
- Department of Health Sciences; University of Applied Sciences and Arts of Southern Switzerland, SUPSI; Manno Switzerland
| | - Alberto Rainoldi
- Motor Science Research Center, School of Exercise and Sport Science, S.U.I.S.M., Department of Medical Sciences; University of Turin; Turin Italy
| | - Carolin Heitz
- Department of Health Sciences; University of Applied Sciences and Arts of Southern Switzerland, SUPSI; Landquart Switzerland
| | - Marianne Wüthrich
- Department of Health Sciences; University of Applied Sciences and Arts of Southern Switzerland, SUPSI; Landquart Switzerland
| | - Gennaro Boccia
- Motor Science Research Center, School of Exercise and Sport Science, S.U.I.S.M., Department of Medical Sciences; University of Turin; Turin Italy
| | - Enrico Tomasoni
- Motor Science Research Center, School of Exercise and Sport Science, S.U.I.S.M., Department of Medical Sciences; University of Turin; Turin Italy
| | - Carlo Spirolazzi
- School of Physiotherapy; Vita-Salute San Raffaele University; Milan Italy
| | - Michele Egloff
- Department of Health Sciences; University of Applied Sciences and Arts of Southern Switzerland, SUPSI; Manno Switzerland
| | - Marco Barbero
- Department of Health Sciences; University of Applied Sciences and Arts of Southern Switzerland, SUPSI; Manno Switzerland
| |
Collapse
|
34
|
Effects of muscle fibre shortening on the characteristics of surface motor unit potentials. Med Biol Eng Comput 2013; 52:95-107. [PMID: 24170551 DOI: 10.1007/s11517-013-1112-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022]
|
35
|
Investigation of innervation zone shift with continuous dynamic muscle contraction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:174342. [PMID: 23762179 PMCID: PMC3677009 DOI: 10.1155/2013/174342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/15/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022]
Abstract
Innervation zone (IZ) has been identified as the origin of action potential propagation in isometric contraction. However, IZ shifts with changes in muscle length during muscle activity. The IZ shift has been estimated using raw EMG signals. This study aimed to investigate the movement of IZ location during continuous dynamic muscle contraction, using a computer program. Subjects flexed their elbow joint as repetitive dynamic muscle contractions. EMG signals were recorded from the biceps brachii muscle using an eight-channel surface electrode array. Approximately 100 peaks from EMG signals were detected for each channel and summed to estimate the IZ location. For each subject, the estimated IZ locations were subtracted from the IZ location during isometric contractions with the elbow flexed at 90°. The results showed that the IZ moved significantly with elbow joint movement from 45° to 135°. However, IZ movement was biased with only a 3.9 mm IZ shift on average when the elbow angle was acute but a 16 mm IZ shift on average when it was obtuse. The movement of IZ location during continuous dynamic muscle contraction can be investigated using this signal processing procedure without subjective judgment.
Collapse
|
36
|
Spatial distribution of surface action potentials generated by individual motor units in the human biceps brachii muscle. J Electromyogr Kinesiol 2013; 23:766-77. [PMID: 23619102 DOI: 10.1016/j.jelekin.2013.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 11/23/2022] Open
Abstract
This study analyses the spatial distribution of individual motor unit potentials (MUPs) over the skin surface and the influence of motor unit depth and recording configuration on this distribution. Multichannel surface (13×5 electrode grid) and intramuscular (wire electrodes inserted with needles of lengths 15 and 25mm) electromyographic (EMG) signals were concurrently recorded with monopolar derivations from the biceps brachii muscle of 10 healthy subjects during 60-s isometric contractions at 20% of the maximum torque. Multichannel monopolar MUPs of the target motor unit were obtained by spike-triggered averaging of the surface EMG. Amplitude and frequency characteristics of monopolar and bipolar MUPs were calculated for locations along the fibers' direction (longitudinal), and along the direction perpendicular (transverse) to the fibers. In the longitudinal direction, monopolar and bipolar MUPs exhibited marked amplitude changes that extended for 16-32mm and 16-24mm over the innervation and tendon zones, respectively. The variation of monopolar and bipolar MUP characteristics was not symmetrical about the innervation zone. Motor unit depth had a considerable influence on the relative longitudinal variation of amplitude for monopolar MUPs, but not for bipolar MUPs. The transverse extension of bipolar MUPs ranged between 24 and 32mm, whereas that of monopolar MUPs ranged between 72 and 96mm. The mean power spectral frequency of surface MUPs was highly dependent on the transverse electrode location but not on depth. This study provides a basis for the interpretation of the contribution of individual motor units to the interference surface EMG signal.
Collapse
|
37
|
Pereira MCC, Rocha Júnior VDA, Bottaro M, de Andrade MM, Schwartz FP, Martorelli A, Celes R, Carmo JC. Relationship between ventilatory threshold and muscle fiber conduction velocity responses in trained cyclists. J Electromyogr Kinesiol 2013; 23:448-54. [DOI: 10.1016/j.jelekin.2012.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 12/01/2022] Open
|
38
|
Kamavuako EN, Scheme EJ, Englehart KB. Wrist torque estimation during simultaneous and continuously changing movements: surface vs. untargeted intramuscular EMG. J Neurophysiol 2013; 109:2658-65. [PMID: 23515790 DOI: 10.1152/jn.00086.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this paper, the predictive capability of surface and untargeted intramuscular electromyography (EMG) was compared with respect to wrist-joint torque to quantify which type of measurement better represents joint torque during multiple degrees-of-freedom (DoF) movements for possible application in prosthetic control. Ten able-bodied subjects participated in the study. Surface and intramuscular EMG was recorded concurrently from the right forearm. The subjects were instructed to track continuous contraction profiles using single and combined DoF in two trials. The association between torque and EMG was assessed using an artificial neural network. Results showed a significant difference between the two types of EMG (P < 0.007) for all performance metrics: coefficient of determination (R(2)), Pearson correlation coefficient (PCC), and root mean square error (RMSE). The performance of surface EMG (R(2) = 0.93 ± 0.03; PCC = 0.98 ± 0.01; RMSE = 8.7 ± 2.1%) was found to be superior compared with intramuscular EMG (R(2) = 0.80 ± 0.07; PCC = 0.93 ± 0.03; RMSE = 14.5 ± 2.9%). The higher values of PCC compared with R(2) indicate that both methods are able to track the torque profile well but have some trouble (particularly intramuscular EMG) in estimating the exact amplitude. The possible cause for the difference, thus the low performance of intramuscular EMG, may be attributed to the very high selectivity of the recordings used in this study.
Collapse
Affiliation(s)
- Ernest N Kamavuako
- Center for SMI, Dept. of HST, Aalborg Univ., Fredrik Bajers Vej 7 D3, DK-9220 Aalborg, Denmark.
| | | | | |
Collapse
|
39
|
Herda TJ, Zuniga JM, Ryan ED, Camic CL, Bergstrom HC, Smith DB, Weir JP, Cramer JT, Housh TJ. Quantifying the effects of electrode distance from the innervation zone on the electromyographic amplitude versus torque relationships. Physiol Meas 2013; 34:315-24. [PMID: 23399865 DOI: 10.1088/0967-3334/34/3/315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study applied a log-transformation model to compare the electromyographic (EMG) amplitude versus torque relationships from monopolar EMG signals up to 35 mm proximal and distal from the innervation zone (IZ). Seven men (age = 23 ± 2 year; mass = 82 ± 10 kg) and two women (age = 21 ± 1 year; mass = 62 ± 8 kg) performed isometric ramp contractions of the right leg extensors with an eight-channel linear electrode array positioned over the vastus lateralis with the IZ located between channels 4 and 5. Linear regression models were fit to the log-transformed monopolar EMG(RMS)-torque relationships with the b terms (slope) and the a terms (Y-intercept) calculated for each channel and subject. The b terms for channels 4, 5, and 6 were higher (P ≤ 0.05) than the more distal channels 7 and 8 (P < 0.05). In contrast, there were no differences (P > 0.05) among the a terms of the eight channels. Thus, the shapes of the monopolar EMG(RMS)-torque relationships were altered as a function of distance between the IZ and recording area, which may be helpful for clinicians and researchers who infer changes in motor control strategies based on the shapes of the EMG(RMS)-torque relationships.
Collapse
Affiliation(s)
- Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Masuda T, Sadoyama T. Distribution of innervation zones in the human biceps brachii. J Electromyogr Kinesiol 2012; 1:107-15. [PMID: 20870500 DOI: 10.1016/1050-6411(91)90004-o] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/1991] [Indexed: 11/27/2022] Open
Abstract
Two types of multicontact surface electrodes were used to define the distribution of innervation zones (motor end-plate regions) in human skeletal muscles: a linear array electrode and a two-dimensional grid electrode. These electrodes detected motor unit action potentials (MUAPs) propagating along the muscle fibers during a voluntary contraction and marked the source of the propagation, which was assumed to indicate the position of the innervation zones. The linear array electrode defined the absolute position of the innervation zones in the muscle, but it could not clarify the detailed distribution, within the innervation zones. On the other hand, the grid electrode clarified the detailed configuration of innervation zones under the pickup area of the electrode, but the absolute position of the sources was inaccurate. The records obtained with these two electrodes were combined to draw a detailed map of the innervation zones over the entire surface of the muscle. In seven healthy normal adults, the biceps brachii was studied. The innervation zones were positioned at the middle length of the muscle in a band 30-60 mm wide. The detailed configuration of the innervation zones varied between the subjects.
Collapse
|
41
|
Hedayatpour N, Arendt-Nielsen L, Falla D. Facilitation of quadriceps activation is impaired following eccentric exercise. Scand J Med Sci Sports 2012; 24:355-62. [DOI: 10.1111/j.1600-0838.2012.01512.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2012] [Indexed: 11/29/2022]
Affiliation(s)
- N. Hedayatpour
- Department of Physical Education and Sport Science; University of Bojnord; Bojnord Iran
- Department of Health Science and Technology; Center for Sensory-Motor Interaction (SMI); Aalborg University; Aalborg Denmark
| | - L. Arendt-Nielsen
- Department of Health Science and Technology; Center for Sensory-Motor Interaction (SMI); Aalborg University; Aalborg Denmark
| | - D. Falla
- Pain Clinic; Center for Anesthesiology; Emergency and Intensive Care Medicine; University Hospital Göttingen; Göttingen Germany
- Department of Neurorehabilitation Engineering; Bernstein Focus Neurotechnology (BFNT) Göttingen; Bernstein Center for Computational Neuroscience; University Medical Center Göttingen; Georg-August University; Göttingen Germany
| |
Collapse
|
42
|
Kendell C, Lemaire ED, Losier Y, Wilson A, Chan A, Hudgins B. A novel approach to surface electromyography: an exploratory study of electrode-pair selection based on signal characteristics. J Neuroeng Rehabil 2012; 9:24. [PMID: 22537650 PMCID: PMC3496600 DOI: 10.1186/1743-0003-9-24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 04/20/2012] [Indexed: 11/23/2022] Open
Abstract
A 3 × 4 electrode array was placed over each of seven muscles and surface electromyography (sEMG) data were collected during isometric contractions. For each array, nine bipolar electrode pairs were formed off-line and sEMG parameters were calculated and evaluated based on repeatability across trials and comparison to an anatomically placed electrode pair. The use of time-domain parameters for the selection of an electrode pair from within a grid-like array may improve upon existing electrode placement methodologies.
Collapse
Affiliation(s)
- Cynthia Kendell
- The Ottawa Hospital Rehabilitation Centre, and Department of Systems and Computer Engineering, Carleton University, 505 Smyth Road, Ottawa, ON, K1H8M2, Canada.
| | | | | | | | | | | |
Collapse
|
43
|
CASTROFLORIO T, FALLA D, TARTAGLIA GM, SFORZA C, DEREGIBUS A. Myoelectric manifestations of jaw elevator muscle fatigue and recovery in healthy and TMD subjects. J Oral Rehabil 2012; 39:648-58. [DOI: 10.1111/j.1365-2842.2012.02309.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Rantalainen T, Kłodowski A, Piitulainen H. Effect of innervation zones in estimating biceps brachii force-EMG relationship during isometric contraction. J Electromyogr Kinesiol 2011; 22:80-7. [PMID: 22019132 DOI: 10.1016/j.jelekin.2011.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/30/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
Measuring muscle forces in vivo is invasive and consequently indirect methods e.g., electromyography (EMG) are used in estimating muscular force production. The aim of the present paper was to examine what kind of effect the disruption of the physiological signal caused by the innervation zone has in predicting the force/torque output from surface EMG. Twelve men (age 26 (SD ±3)years; height 179 (±6)cm; body mass 73 (±6)kg) volunteered as subjects. They were asked to perform maximal voluntary isometric contraction (MVC) in elbow flexion, and submaximal contractions at 10%, 20%, 30%, 40%, 50% and 75% of the recorded MVC. EMG was measured from biceps brachii muscle with an electrode grid of 5 columns×13 rows. Force-EMG relationships were determined from individual channels and as the global mean value. The relationship was deemed inconsistent if EMG value did not increase in successive force levels. Root mean squared errors were calculated for 3rd order polynomial fits. All subjects had at least one (4-52) inconsistent channel. Two subjects had inconsistent relationship calculated from the global mean. The mean root mean squared error calculated using leave one out method for the fits of the individual channels (0.33±0.17) was higher (P<0.001) than the error for the global mean fit (0.16±0.08). It seems that the disruption of the physiological signal caused by the innervation zone affects the consistency of the force-EMG relationship on single bipolar channel level. Multichannel EMG recordings used for predicting force overcame this disruption.
Collapse
Affiliation(s)
- Timo Rantalainen
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia.
| | | | | |
Collapse
|
45
|
Bowden JL, McNulty PA. Mapping the motor point in the human tibialis anterior muscle. Clin Neurophysiol 2011; 123:386-92. [PMID: 21802984 DOI: 10.1016/j.clinph.2011.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/31/2011] [Accepted: 06/19/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Percutaneous electrical stimulation of the motor point permits selective activation of a muscle. However, the definition and number of motor points reported for a given muscle varies. Our goal was to address these problems. METHODS The area, location and number of motor points in human tibialis anterior were examined, using isometric dorsiflexion torque responses to electrical stimuli. Three methods were used: lowest electrical threshold, maximum muscle response, and approximate motor point. RESULTS A single motor point was identified in 39/40 subjects regardless of method. The area of the site of lowest electrical threshold was smaller (median, 35 mm(2)) than those using the maximum muscle response (144 mm(2)) and approximate motor point (132 mm(2)). There was substantial, but not significant, between-subject variation in motor point location. Fifty three percent of motor points would have been missed if located only by reference to anatomical landmarks. CONCLUSIONS These results suggested that the motor point's location cannot be determined a priori and that the identification method will affect both area and location. SIGNIFICANCE If it is important to maximally activate a single muscle in isolation, the motor point is best represented by the site producing a maximal but isolated muscle response at the lowest stimulation intensity.
Collapse
Affiliation(s)
- J L Bowden
- Neuroscience Research Australia, Sydney, Australia
| | | |
Collapse
|
46
|
Barbero M, Gatti R, Lo Conte L, Macmillan F, Coutts F, Merletti R. Reliability of surface EMG matrix in locating the innervation zone of upper trapezius muscle. J Electromyogr Kinesiol 2011; 21:827-33. [PMID: 21752668 DOI: 10.1016/j.jelekin.2011.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/15/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022] Open
Abstract
The identification of the motor unit (MU) innervation zone (IZ) using surface electromyographic (sEMG) signals detected on the skin with a linear array or a matrix of electrodes has been recently proposed in the literature. However, an analysis of the reliability of this procedure and, therefore, of the suitability of the sEMG signals for this purpose has not been reported. The purpose of this work is to describe the intra and inter-rater reliability and the suitability of surface EMG in locating the innervation zone of the upper trapezius muscle. Two operators were trained on electrode matrix positioning and sEMG signal analysis. Ten healthy subjects, instructed to perform a series of isometric contractions of the upper trapezius muscle participated in the study. The two operators collected sEMG signals and then independently estimated the IZ location through visual analysis. Results showed an almost perfect agreement for intra-rater and inter-rater reliability. The constancy of IZ location could be affected by the factors reflecting the population of active MUs and their IZs, including: the contraction intensity, the acquisition period analyzed, the contraction repetition. In almost all cases the IZ location shift due to these factors did not exceed 4mm. Results generalization to other muscles should be made with caution.
Collapse
Affiliation(s)
- Marco Barbero
- School of Health Sciences, Queen Margaret University, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Muscle fibre conduction velocity during a 30-s Wingate anaerobic test. J Electromyogr Kinesiol 2011; 21:418-22. [PMID: 21419647 DOI: 10.1016/j.jelekin.2011.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/12/2011] [Accepted: 02/14/2011] [Indexed: 11/22/2022] Open
Abstract
Ten male volunteers (age 29.2 ± 5.2 years, mean ± SD) were recruited to test the hypothesis that muscle fibre conduction velocity (MFCV) would decrease with power output during a 30-s Wingate test on a mechanically-braked cycle ergometer. Prior to the main test, the optimal pre-fixed load corresponding to the highest power output was selected following a random series of six 10-s sprints. Surface electromyographic (EMG) signals were detected from the right vastus lateralis with linear adhesive arrays of eight electrodes. Power output decreased significantly from 6-s until the end of the test (860.9 ± 207.8 vs. 360.9 ± 11.4 W, respectively) and was correlated with MFCV (R=0.543, P<0.01), which also declined significantly by 26.8 ± 11% (P<0.05). There was a tendency for the mean frequency of the EMG power spectrum (MNF) to decrease, but average rectified values (ARV) remained unchanged throughout the test. The parallel decline of MFCV with power output suggests changes in fibre membrane properties. The unaltered ARV, together with the declined MFCV, would indicate either a decrease in discharge rate, de-recruitment of fatigued motor units or elongation of still present motor unit action potentials.
Collapse
|
48
|
Kamavuako EN, Farina D. Time-dependent effects of pre-conditioning activation on muscle fiber conduction velocity and twitch torque. Muscle Nerve 2010; 42:547-55. [DOI: 10.1002/mus.21726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Innervation zone location of the biceps brachii, a comparison between genders and correlation with anthropometric measurements. J Electromyogr Kinesiol 2010; 20:76-80. [DOI: 10.1016/j.jelekin.2008.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 11/23/2022] Open
|
50
|
Piitulainen H, Bottas R, Linnamo V, Komi P, Avela J. Effect of electrode location on surface electromyography changes due to eccentric elbow flexor exercise. Muscle Nerve 2009; 40:617-25. [DOI: 10.1002/mus.21249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|