Wang C, Li Y, Wang L, Liu S, Yang S. A study of EEG non-stationarity on inducing false memory in different emotional states.
Neurosci Lett 2023;
809:137306. [PMID:
37244446 DOI:
10.1016/j.neulet.2023.137306]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
False memory leads to inaccurate decisions and unnecessary challenges. Researchers have conventionally used electroencephalography (EEG) to study false memory under different emotional states. However, EEG non-stationarity has scarcely been investigated. To address this problem, this study utilized the nonlinear method of recursive quantitative analysis to analyze the non-stationarity of EEG signals. Deese-Roediger-McDermott paradigm experiments were used to induce false memory wherein semantic words were highly correlated. The EEG signals of 48 participants with false memory associated with different emotional states were collected. Recurrence rate (RR), determination rate (DET), and entropy recurrence (ENTR) data were generated to characterize EEG non-stationarity. Behavioral outcomes exhibited significantly higher false-memory rates in the positive group than in the negative group. The prefrontal, temporal, and parietal regions yielded significantly higher RR, DET, and ENTR values than other brain regions in the positive group. However, only the prefrontal region had significantly higher values than other brain regions in the negative group. Therefore, positive emotions enhance non-stationarity in brain regions associated with semantics compared with negative emotions, leading to a higher false-memory rate. This suggests that non-stationary alterations in brain regions under different emotional states are correlated with false memory.
Collapse