1
|
Zettinig O, Mansi T, Neumann D, Georgescu B, Rapaka S, Seegerer P, Kayvanpour E, Sedaghat-Hamedani F, Amr A, Haas J, Steen H, Katus H, Meder B, Navab N, Kamen A, Comaniciu D. Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals. Med Image Anal 2014; 18:1361-76. [PMID: 24857832 DOI: 10.1016/j.media.2014.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/17/2014] [Accepted: 04/10/2014] [Indexed: 11/25/2022]
Abstract
Diagnosis and treatment of dilated cardiomyopathy (DCM) is challenging due to a large variety of causes and disease stages. Computational models of cardiac electrophysiology (EP) can be used to improve the assessment and prognosis of DCM, plan therapies and predict their outcome, but require personalization. In this work, we present a data-driven approach to estimate the electrical diffusivity parameter of an EP model from standard 12-lead electrocardiograms (ECG). An efficient forward model based on a mono-domain, phenomenological Lattice-Boltzmann model of cardiac EP, and a boundary element-based mapping of potentials to the body surface is employed. The electrical diffusivity of myocardium, left ventricle and right ventricle endocardium is then estimated using polynomial regression which takes as input the QRS duration and electrical axis. After validating the forward model, we computed 9500 EP simulations on 19 different DCM patients in just under three seconds each to learn the regression model. Using this database, we quantify the intrinsic uncertainty of electrical diffusion for given ECG features and show in a leave-one-patient-out cross-validation that the regression method is able to predict myocardium diffusion within the uncertainty range. Finally, our approach is tested on the 19 cases using their clinical ECG. 84% of them could be personalized using our method, yielding mean prediction errors of 18.7ms for the QRS duration and 6.5° for the electrical axis, both values being within clinical acceptability. By providing an estimate of diffusion parameters from readily available clinical data, our data-driven approach could therefore constitute a first calibration step toward a more complete personalization of cardiac EP.
Collapse
Affiliation(s)
- Oliver Zettinig
- Siemens Corporate Technology, Imaging and Computer Vision, Princeton, NJ, USA; Computer Aided Medical Procedures, Technische Universität München, Germany
| | - Tommaso Mansi
- Siemens Corporate Technology, Imaging and Computer Vision, Princeton, NJ, USA.
| | - Dominik Neumann
- Siemens Corporate Technology, Imaging and Computer Vision, Princeton, NJ, USA; Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Bogdan Georgescu
- Siemens Corporate Technology, Imaging and Computer Vision, Princeton, NJ, USA
| | - Saikiran Rapaka
- Siemens Corporate Technology, Imaging and Computer Vision, Princeton, NJ, USA
| | - Philipp Seegerer
- Siemens Corporate Technology, Imaging and Computer Vision, Princeton, NJ, USA; Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | | - Ali Amr
- Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Haas
- Heidelberg University Hospital, Heidelberg, Germany
| | | | - Hugo Katus
- Heidelberg University Hospital, Heidelberg, Germany
| | | | - Nassir Navab
- Computer Aided Medical Procedures, Technische Universität München, Germany
| | - Ali Kamen
- Siemens Corporate Technology, Imaging and Computer Vision, Princeton, NJ, USA
| | - Dorin Comaniciu
- Siemens Corporate Technology, Imaging and Computer Vision, Princeton, NJ, USA
| |
Collapse
|
2
|
Jiang M, Zhu L, Wang Y, Xia L, Shou G, Liu F, Crozier S. Application of kernel principal component analysis and support vector regression for reconstruction of cardiac transmembrane potentials. Phys Med Biol 2011; 56:1727-42. [PMID: 21346274 DOI: 10.1088/0031-9155/56/6/013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Non-invasively reconstructing the transmembrane potentials (TMPs) from body surface potentials (BSPs) constitutes one form of the inverse ECG problem that can be treated as a regression problem with multi-inputs and multi-outputs, and which can be solved using the support vector regression (SVR) method. In developing an effective SVR model, feature extraction is an important task for pre-processing the original input data. This paper proposes the application of principal component analysis (PCA) and kernel principal component analysis (KPCA) to the SVR method for feature extraction. Also, the genetic algorithm and simplex optimization method is invoked to determine the hyper-parameters of the SVR. Based on the realistic heart-torso model, the equivalent double-layer source method is applied to generate the data set for training and testing the SVR model. The experimental results show that the SVR method with feature extraction (PCA-SVR and KPCA-SVR) can perform better than that without the extract feature extraction (single SVR) in terms of the reconstruction of the TMPs on epi- and endocardial surfaces. Moreover, compared with the PCA-SVR, the KPCA-SVR features good approximation and generalization ability when reconstructing the TMPs.
Collapse
Affiliation(s)
- Mingfeng Jiang
- The College of Electronics and Informatics, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Sawicki B, Okoniewski M. Adaptive mesh refinement techniques for 3-D skin electrode modeling. IEEE Trans Biomed Eng 2010; 57:528-33. [PMID: 19789105 DOI: 10.1109/tbme.2009.2032163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper, we develop a 3-D adaptive mesh refinement technique. The algorithm is constructed with an electric impedance tomography forward problem and the finite-element method in mind, but is applicable to a much wider class of problems. We use the method to evaluate the distribution of currents injected into a model of a human body through skin contact electrodes. We demonstrate that the technique leads to a significantly improved solution, particularly near the electrodes. We discuss error estimation, efficiency, and quality of the refinement algorithm and methods that allow for preserving mesh attributes in the refinement process.
Collapse
Affiliation(s)
- Bartosz Sawicki
- Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | | |
Collapse
|