1
|
Celotto C, Sánchez C, Mountris KA, Laguna P, Pueyo E. Location of Parasympathetic Innervation Regions From Electrograms to Guide Atrial Fibrillation Ablation Therapy: An in silico Modeling Study. Front Physiol 2021; 12:674197. [PMID: 34456743 PMCID: PMC8385640 DOI: 10.3389/fphys.2021.674197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023] Open
Abstract
The autonomic nervous system (ANS) plays an essential role in the generation and maintenance of cardiac arrhythmias. The cardiac ANS can be divided into its extrinsic and intrinsic components, with the latter being organized in an epicardial neural network of interconnecting axons and clusters of autonomic ganglia called ganglionated plexi (GPs). GP ablation has been associated with a decreased risk of atrial fibrillation (AF) recurrence, but the accurate location of GPs is required for ablation to be effective. Although GP stimulation triggers both sympathetic and parasympathetic ANS branches, a predominance of parasympathetic activity has been shown. This study aims was to develop a method to locate atrial parasympathetic innervation sites based on measurements from a grid of electrograms (EGMs). Electrophysiological models representative of non-AF, paroxysmal AF (PxAF), and persistent AF (PsAF) tissues were developed. Parasympathetic effects were modeled by increasing the concentration of the neurotransmitter acetylcholine (ACh) in randomly distributed circles across the tissue. Different circle sizes of ACh and fibrosis geometries were considered, accounting for both uniform diffuse and non-uniform diffuse fibrosis. Computational simulations were performed, from which unipolar EGMs were computed in a 16 × 1 6 electrode mesh. Different distances of the electrodes to the tissue (0.5, 1, and 2 mm) and noise levels with signal-to-noise ratio (SNR) values of 0, 5, 10, 15, and 20 dB were tested. The amplitude of the atrial EGM repolarization wave was found to be representative of the presence or absence of ACh release sites, with larger positive amplitudes indicating that the electrode was placed over an ACh region. Statistical analysis was performed to identify the optimal thresholds for the identification of ACh sites. In all non-AF, PxAF, and PsAF tissues, the repolarization amplitude rendered successful identification. The algorithm performed better in the absence of fibrosis or when fibrosis was uniformly diffuse, with a mean accuracy of 0.94 in contrast with a mean accuracy of 0.89 for non-uniform diffuse fibrotic cases. The algorithm was robust against noise and worked for the tested ranges of electrode-to-tissue distance. In conclusion, the results from this study support the feasibility to locate atrial parasympathetic innervation sites from the amplitude of repolarization wave.
Collapse
Affiliation(s)
- Chiara Celotto
- Aragon Institute of Engineering Research-I3A-, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Carlos Sánchez
- Aragon Institute of Engineering Research-I3A-, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Konstantinos A. Mountris
- Aragon Institute of Engineering Research-I3A-, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Pablo Laguna
- Aragon Institute of Engineering Research-I3A-, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Esther Pueyo
- Aragon Institute of Engineering Research-I3A-, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| |
Collapse
|
2
|
Campos FO, Orini M, Arnold R, Whitaker J, O'Neill M, Razavi R, Plank G, Hanson B, Porter B, Rinaldi CA, Gill J, Lambiase PD, Taggart P, Bishop MJ. Assessing the ability of substrate mapping techniques to guide ventricular tachycardia ablation using computational modelling. Comput Biol Med 2021; 130:104214. [PMID: 33476992 DOI: 10.1016/j.compbiomed.2021.104214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Identification of targets for ablation of post-infarction ventricular tachycardias (VTs) remains challenging, often requiring arrhythmia induction to delineate the reentrant circuit. This carries a risk for the patient and may not be feasible. Substrate mapping has emerged as a safer strategy to uncover arrhythmogenic regions. However, VT recurrence remains common. GOAL To use computer simulations to assess the ability of different substrate mapping approaches to identify VT exit sites. METHODS A 3D computational model of the porcine post-infarction heart was constructed to simulate VT and paced rhythm. Electroanatomical maps were constructed based on endocardial electrogram features and the reentry vulnerability index (RVI - a metric combining activation (AT) and repolarization timings to identify tissue susceptibility to reentry). Since scar transmurality in our model was not homogeneous, parameters derived from all signals (including dense scar regions) were used in the analysis. Potential ablation targets obtained from each electroanatomical map during pacing were compared to the exit site detected during VT mapping. RESULTS Simulation data showed that voltage cut-offs applied to bipolar electrograms could delineate the scar, but not the VT circuit. Electrogram fractionation had the highest correlation with scar transmurality. The RVI identified regions closest to VT exit site but was outperformed by AT gradients combined with voltage cut-offs. The performance of all metrics was affected by pacing location. CONCLUSIONS Substrate mapping could provide information about the infarct, but the directional dependency on activation should be considered. Activation-repolarization metrics have utility in safely identifying VT targets, even with non-transmural scars.
Collapse
Affiliation(s)
- Fernando O Campos
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom.
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Electrophysiology Department, Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Robert Arnold
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division of Biophysics, Graz, Austria
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - Gernot Plank
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division of Biophysics, Graz, Austria
| | - Ben Hanson
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Bradley Porter
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom; Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | | | - Jaswinder Gill
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom; Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Electrophysiology Department, Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Electrophysiology Department, Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| |
Collapse
|
3
|
Tse G, Wong ST, Tse V, Yeo JM. Monophasic action potential recordings: which is the recording electrode? J Basic Clin Physiol Pharmacol 2017; 27:457-62. [PMID: 27135622 DOI: 10.1515/jbcpp-2016-0007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/29/2016] [Indexed: 11/15/2022]
Abstract
The aim of this article is to provide an overview of current debate on the monophasic action potential (MAP) recording technique, specifically whether the depolarizing or the reference electrode is responsible for recording the MAP waveform. A literature search was made using key words including monophasic action potential, MAP, electrophysiological basis, recording electrode, depolarizing electrode, contact electrode, indifferent electrode, and reference electrode. References from articles were screened for additional relevant papers. Articles published by the different experimental groups claim that depolarizing electrode, but not reference electrode, records MAPs from the myocardium. This can be more accurately described when considering biophysical theory, which states that MAP is a bipolar signal with contributions from not only the depolarizing electrode but also remote activation at the reference electrode. It is not meaningful to claim that one is the recording electrode because potential differences must be measured between two points in space. Nevertheless, the MAP technique is useful for assessing the local electrical activity of the myocardium in contact with the depolarizing electrode. It is important to have the recording electrode in close proximity with the reference electrode to minimize contamination from far-field signals.
Collapse
|
4
|
Pei F, Jiang J, Bai S, Cao H, Tian L, Zhao Y, Yang C, Dong H, Ma Y. Chemical-defined and albumin-free generation of human atrial and ventricular myocytes from human pluripotent stem cells. Stem Cell Res 2017; 19:94-103. [PMID: 28110125 DOI: 10.1016/j.scr.2017.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
Most existing culture media for cardiac differentiation of human pluripotent stem cells (hPSCs) contain significant amounts of albumin. For clinical transplantation applications of hPSC-derived cardiomyocytes (hPSC-CMs), culturing cells in an albumin containing environment raises the concern of pathogen contamination and immunogenicity to the recipient patients. In addition, batch-to-batch variation of albumin may cause the inconsistent of hPSC cardiac differentiation. Here, we demonstrated that antioxidants l-ascorbic acid, trolox, N-acetyl-l-cysteine (NAC) and sodium pyruvate could functionally substitute albumin in the culture medium, and formulated an albumin-free, chemical-defined medium (S12 medium). We showed that S12 medium could support efficient hPSC cardiac differentiation with significantly improved reproducibility, and maintained long-term culture of hPSC-CMs. Furthermore, under chemical-defined and albumin-free conditions, human-induced pluripotent stem cells (hiPSCs) were established, and differentiated into highly homogenous atrial and ventricular myocytes in a scalable fashion with normal electrophysiological properties. Finally, we characterized the activity of three typical cardiac ion channels of those cells, and demonstrated that hPSC-derived ventricular cardiomyocytes (hPSC-vCMs) were suitable for drug cardiac safety evaluation. In summary, this simplified, chemical-defined and albumin-free culture medium supports efficient generation and maintaining of hPSC-CMs and facilitates both research and clinical applications of these cells.
Collapse
Affiliation(s)
- Fei Pei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; Medical School of University of Chinese Academy of Sciences, Beijing 100101, China
| | - Junjie Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; Medical School of University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyun Bai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; Medical School of University of Chinese Academy of Sciences, Beijing 100101, China
| | - Henghua Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; Medical School of University of Chinese Academy of Sciences, Beijing 100101, China
| | - Luyang Tian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; Medical School of University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ya Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; Medical School of University of Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanxiu Yang
- Biology Unit, Research Division, WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Haiheng Dong
- Biology Unit, Research Division, WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Yue Ma
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; Medical School of University of Chinese Academy of Sciences, Beijing 100101, China..
| |
Collapse
|
5
|
Choy L, Yeo JM, Tse V, Chan SP, Tse G. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. IJC HEART & VASCULATURE 2016; 12:1-10. [PMID: 27766308 PMCID: PMC5064289 DOI: 10.1016/j.ijcha.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.
Collapse
Affiliation(s)
- Lois Choy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Jie Ming Yeo
- School of Medicine, Imperial College London, SW7 2AZ, UK
| | - Vivian Tse
- Department of Physiology, McGill University, Canada
| | - Shing Po Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
6
|
Tse G, Yan BP, Chan YWF, Tian XY, Huang Y. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis. Front Physiol 2016; 7:313. [PMID: 27536244 PMCID: PMC4971160 DOI: 10.3389/fphys.2016.00313] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. METHOD A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. RESULTS Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. CONCLUSION ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong KongHong Kong, China
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong KongHong Kong, China
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourne, VIC, Australia
| | - Yin W. F. Chan
- Department of Psychology, School of Biological Sciences, University of CambridgeCambridge, UK
| | - Xiao Yu Tian
- Faculty of Medicine, School of Biomedical Sciences, Chinese University of Hong KongHong Kong, China
| | - Yu Huang
- Faculty of Medicine, School of Biomedical Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|
7
|
Tse G, Lai ETH, Yeo JM, Tse V, Wong SH. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology. Front Physiol 2016; 7:182. [PMID: 27303305 PMCID: PMC4885840 DOI: 10.3389/fphys.2016.00182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Vivian Tse
- Department of Physiology, McGill UniversityMontreal, QC, Canada
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|
8
|
Tse G, Lai ETH, Yeo JM, Yan BP. Electrophysiological Mechanisms of Bayés Syndrome: Insights from Clinical and Mouse Studies. Front Physiol 2016; 7:188. [PMID: 27303306 PMCID: PMC4886053 DOI: 10.3389/fphys.2016.00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Bayés syndrome is an under-recognized clinical condition characterized by inter-atrial block (IAB). This is defined electrocardiographically as P-wave duration > 120 ms and can be categorized into first, second and third degree IAB. It can be caused by inflammatory conditions such as systemic sclerosis and rheumatoid arthritis, abnormal protein deposition in cardiac amyloidosis, or neoplastic processes invading the inter-atrial conduction system, such as primary cardiac lymphoma. It may arise transiently during volume overload, autonomic dysfunction or electrolyte disturbances from vomiting. In other patients without an obvious cause, the predisposing factors are diabetes mellitus, hypertensive heart disease, and hypercholesterolemia. IAB has a strong association with atrial arrhythmogenesis, left atrial enlargement (LAE), and electro-mechanical discordance, increasing the risk of cerebrovascular accidents as well as myocardial and mesenteric ischemia. The aim of this review article is to synthesize experimental evidence on the pathogenesis of IAB and its underlying molecular mechanisms. Current medical therapies include anti-fibrotic, anti-arrhythmic and anti-coagulation agents, whereas interventional options include atrial resynchronization therapy by single or multisite pacing. Future studies will be needed to elucidate the significance of the link between IAB and atrial tachyarrhythmias in patients with different underlying etiologies and optimize the management options in these populations.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
9
|
Jayaraman S, Gandhi U, Sangareddi V, Mangalanathan U, Shanmugam RM. Unmasking of atrial repolarization waves using a simple modified limb lead system. Anatol J Cardiol 2015; 15:605-10. [PMID: 25550180 PMCID: PMC5336858 DOI: 10.5152/akd.2014.5695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2014] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE In the present study, a modified limb lead (MLL) system was used to record the Ta wave in sinus rhythm and with AV block in male patients. METHODS Eighty male subjects (mean age 36 ± 7 years) in sinus rhythm and 20 male patients with AV block (mean age 72 ± 5 years) were included in this study. Standard limb lead (SLL) ECGs and MLL ECGs were recorded for 60 seconds each with an EDAN SE-1010 PC ECG system. RESULTS In sinus rhythm subjects, the observable Ta wave duration was 109 ± 4.7 ms, the P-Ta duration was 196 ± 5.1 ms, and the corrected P-Ta duration was 238 ± 7.2 ms. The Ta wave peak amplitude was -42 ± 8 µV. In AV block patients, the Ta wave duration was 314 ± 28 ms the P-Ta duration was 418 ± 29 ms and the corrected P-Ta duration was 46 ± 31 ms, while the Ta wave peak amplitude was -37 ± 9 µV. A correlation was found between the P and Ta wave amplitude, and no correlation was found between the P and Ta wave duration or the Ta amplitude and Ta duration in sinus rhythm and AV block subjects. CONCLUSION The end of the Ta wave is not observable in sinus rhythm subjects, as it extends into the QRS complex and ST segment. In AV block patients, the Ta wave duration was generally three times longer than the observable Ta duration in sinus rhythm subjects.
Collapse
Affiliation(s)
- Sivaraman Jayaraman
- Department of Instrumentation and Control Engineering, National Institute of Technology; Tiruchirappalli-India.
| | | | | | | | | |
Collapse
|
10
|
Moss E, Cardinal R, Yin Y, Pagé P. Biatrial neuroablation attenuates atrial remodeling and vulnerability to atrial fibrillation in canine chronic rapid atrial pacing. Auton Neurosci 2015; 189:43-9. [PMID: 25746009 DOI: 10.1016/j.autneu.2015.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/24/2014] [Accepted: 02/17/2015] [Indexed: 11/26/2022]
Abstract
AIMS We investigated the proposition that an intact cardiac nervous system may contribute to electrophysiological remodeling and increased vulnerability to atrial fibrillation (AF) following chronic rapid atrial pacing (RAP). METHODS AND RESULTS Baseline study was conducted prior to ablating right and left ganglionated plexuses (RAGP, LAGP) in 11 anesthetized canines (Neuroablation group) and in 11 canines without neuroablation (Intact GP). After being subjected to RAP (400 beats/min) for 6 weeks, animals were reanesthetized for terminal study. The ERP shortening typical of chronic RAP was significantly more pronounced in the Intact GP (baseline: 112 ± 12 to terminal: 80 ± 11 ms) than in the Neuroablation group (113 ± 18 to 102 ± 21 ms, p < .001), and AF inducibility (extrastimulus protocol) showed significantly greater increment in the Intact GP (baseline: 23 ± 19% to terminal: 60 ± 17% of trials) than in the Neuroablation group (18 ± 15% to 27 ± 17%, p = 0.029). Negative chronotropic responses to right vagus nerve stimulation were markedly reduced immediately after the neuroablation procedure but had recovered at terminal study. Vagally-evoked repolarization changes (from 191 unipolar electrograms) occurred in a majority of Intact GP animals in the superior, middle and inferior RA free wall, and in the LA appendage. In the Neuroablation group, repolarization changes were restricted to the superior RA free wall but none occurred in the inferior RA and only infrequently in the LA appendage, yielding significantly smaller affected areas in Neuroablation than in Intact GP animals. CONCLUSION Persistent functional denervation in LA and RA regions other than RA pacemaker areas may contribute to prevent the development of a tachycardia-dependent AF substrate.
Collapse
Affiliation(s)
- Emmanuel Moss
- Centre de recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada; Department of Surgery, Université de Montréal, Montreal, Canada
| | - René Cardinal
- Centre de recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montreal, Canada
| | - Yalin Yin
- Centre de recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada
| | - Pierre Pagé
- Centre de recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada; Department of Surgery, Université de Montréal, Montreal, Canada.
| |
Collapse
|
11
|
Sabouri S, Matene E, Vinet A, Richer LP, Cardinal R, Armour JA, Pagé P, Kus T, Jacquemet V. Simultaneous epicardial and noncontact endocardial mapping of the canine right atrium: simulation and experiment. PLoS One 2014; 9:e91165. [PMID: 24598778 PMCID: PMC3945013 DOI: 10.1371/journal.pone.0091165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022] Open
Abstract
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals.
Collapse
Affiliation(s)
- Sepideh Sabouri
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Elhacene Matene
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Alain Vinet
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | | | - René Cardinal
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada
| | - J. Andrew Armour
- Department of Pharmacology, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Pierre Pagé
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
- Département de Chirurgie, Université de Montréal, Montréal, Québec, Canada
| | - Teresa Kus
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada
| | - Vincent Jacquemet
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
12
|
MONIGATTI-TENKORANG JOANNA, JOUSSET FLORIAN, PASCALE PATRIZIO, VESIN JEANMARC, RUCHAT PATRICK, FROMER MARTIN, NARAYAN SANJIVM, PRUVOT ETIENNE. Intermittent Atrial Tachycardia Promotes Repolarization Alternans and Conduction Slowing During Rapid Rates, and Increases Susceptibility to Atrial Fibrillation in a Free-Behaving Sheep Model. J Cardiovasc Electrophysiol 2014; 25:418-427. [DOI: 10.1111/jce.12353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/09/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - FLORIAN JOUSSET
- Applied Signal Processing Group; Swiss Federal Institute of Technology; Lausanne Switzerland
| | - PATRIZIO PASCALE
- Department of Cardiology; Lausanne University Hospital; Lausanne Switzerland
| | - JEAN-MARC VESIN
- Applied Signal Processing Group; Swiss Federal Institute of Technology; Lausanne Switzerland
| | - PATRICK RUCHAT
- Department of Cardiovascular Surgery; Lausanne University Hospital; Lausanne Switzerland
| | - MARTIN FROMER
- Department of Cardiology; Lausanne University Hospital; Lausanne Switzerland
| | | | - ETIENNE PRUVOT
- Department of Cardiology; Lausanne University Hospital; Lausanne Switzerland
| |
Collapse
|
13
|
Walton RD, Benson AP, Hardy MEL, White E, Bernus O. Electrophysiological and structural determinants of electrotonic modulation of repolarization by the activation sequence. Front Physiol 2013; 4:281. [PMID: 24115934 PMCID: PMC3792354 DOI: 10.3389/fphys.2013.00281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/18/2013] [Indexed: 11/14/2022] Open
Abstract
Spatial dispersion of repolarization is known to play an important role in arrhythmogenesis. Electrotonic modulation of repolarization by the activation sequence has been observed in some species and tissue preparations, but to varying extents. Our study sought to determine the mechanisms underlying species- and tissue-dependent electrotonic modulation of repolarization in ventricles. Epi-fluorescence optical imaging of whole rat hearts and pig left ventricular wedges were used to assess epicardial spatial activation and repolarization characteristics. Experiments were supported by computer simulations using realistic geometries. Tight coupling between activation times (AT) and action potential duration (APD) were observed in rat experiments but not in pig. Linear correlation analysis found slopes of −1.03 ± 0.59 and −0.26 ± 0.13 for rat and pig, respectively (p < 0.0001). In rat, maximal dispersion of APD was 11.0 ± 3.1 ms but dispersion of repolarization time (RT) was relatively homogeneous (8.2 ± 2.7, p < 0.0001). However, in pig no such difference was observed between the dispersion of APD and RT (17.8 ± 6.1 vs. 17.7 ± 6.5, respectively). Localized elevations of APD (12.9 ± 8.3%) were identified at ventricular insertion sites of rat hearts both in experiments and simulations. Tissue geometry and action potential (AP) morphology contributed significantly to determining influence of electrotonic modulation. Simulations of a rat AP in a pig geometry decreased the slope of AT and APD relationships by 70.6% whereas slopes were increased by 75.0% when implementing a pig AP in a rat geometry. A modified pig AP, shortened to match the rat APD, showed little coupling between AT and APD with greatly reduced slope compared to the rat AP. Electrotonic modulation of repolarization by the activation sequence is especially pronounced in small hearts with murine-like APs. Tissue architecture and AP morphology play an important role in electrotonic modulation of repolarization.
Collapse
Affiliation(s)
- Richard D Walton
- Faculty of Biological Sciences, Multidisciplinary Cardiovascular Research Centre, School of Biomedical Sciences, Institute of Membrane and Systems Biology, University of Leeds Leeds, UK ; Unité Inserm 1045, Centre de Recherche Cardio-Thoracique, Université Bordeaux Segalen Bordeaux, France ; L'Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux Bordeaux, France
| | | | | | | | | |
Collapse
|
14
|
Trayanova NA, O'Hara T, Bayer JD, Boyle PM, McDowell KS, Constantino J, Arevalo HJ, Hu Y, Vadakkumpadan F. Computational cardiology: how computer simulations could be used to develop new therapies and advance existing ones. Europace 2013; 14 Suppl 5:v82-v89. [PMID: 23104919 DOI: 10.1093/europace/eus277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the latest developments in computational cardiology. It focuses on the contribution of cardiac modelling to the development of new therapies as well as the advancement of existing ones for cardiac arrhythmias and pump dysfunction. Reviewed are cardiac modelling efforts aimed at advancing and optimizing existent therapies for cardiac disease (defibrillation, ablation of ventricular tachycardia, and cardiac resynchronization therapy) and at suggesting novel treatments, including novel molecular targets, as well as efforts to use cardiac models in stratification of patients likely to benefit from a given therapy, and the use of models in diagnostic procedures.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Moss E, Cardinal R, Yin Y, Pagé P. Bilateral atrial ganglionated plexus involvement in atrial responses to left-sided plexus stimulation in canines. Cardiovasc Res 2013; 99:194-202. [DOI: 10.1093/cvr/cvt092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Trayanova NA. Computational cardiology: the heart of the matter. ISRN CARDIOLOGY 2012; 2012:269680. [PMID: 23213566 PMCID: PMC3505657 DOI: 10.5402/2012/269680] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 12/19/2022]
Abstract
This paper reviews the newest developments in computational cardiology. It focuses on the contribution of cardiac modeling to the development of new therapies as well as the advancement of existing ones for cardiac arrhythmias and pump dysfunction. Reviewed are cardiac modeling efforts aimed at advancing and optimizing existent therapies for cardiac disease (defibrillation, ablation of ventricular tachycardia, and cardiac resynchronization therapy) and at suggesting novel treatments, including novel molecular targets, as well as efforts to use cardiac models in stratification of patients likely to benefit from a given therapy, and the use of models in diagnostic procedures.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Hackerman Hall Room 216, Baltimore, MD 21218, USA
| |
Collapse
|
17
|
Roberts BN, Yang PC, Behrens SB, Moreno JD, Clancy CE. Computational approaches to understand cardiac electrophysiology and arrhythmias. Am J Physiol Heart Circ Physiol 2012; 303:H766-83. [PMID: 22886409 DOI: 10.1152/ajpheart.01081.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy.
Collapse
Affiliation(s)
- Byron N Roberts
- Tri-Institutional MD-PhD Program, Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College/The Rockefeller University/Sloan-Kettering Cancer Institute, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | |
Collapse
|
18
|
Dössel O, Krueger MW, Weber FM, Wilhelms M, Seemann G. Computational modeling of the human atrial anatomy and electrophysiology. Med Biol Eng Comput 2012; 50:773-99. [PMID: 22718317 DOI: 10.1007/s11517-012-0924-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/21/2012] [Indexed: 01/08/2023]
Abstract
This review article gives a comprehensive survey of the progress made in computational modeling of the human atria during the last 10 years. Modeling the anatomy has emerged from simple "peanut"-like structures to very detailed models including atrial wall and fiber direction. Electrophysiological models started with just two cellular models in 1998. Today, five models exist considering e.g. details of intracellular compartments and atrial heterogeneity. On the pathological side, modeling atrial remodeling and fibrotic tissue are the other important aspects. The bridge to data that are measured in the catheter laboratory and on the body surface (ECG) is under construction. Every measurement can be used either for model personalization or for validation. Potential clinical applications are briefly outlined and future research perspectives are suggested.
Collapse
Affiliation(s)
- Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|
19
|
Jousset F, Tenkorang J, Vesin JM, Pascale P, Ruchat P, Rollin AG, Fromer M, Narayan SM, Pruvot E. Kinetics of atrial repolarization alternans in a free-behaving ovine model. J Cardiovasc Electrophysiol 2012; 23:1003-12. [PMID: 22554055 DOI: 10.1111/j.1540-8167.2012.02336.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Kinetics of Atrial Repolarization Alternans. INTRODUCTION Repolarization alternans (Re-ALT), a beat-to-beat alternation in action potential repolarization, promotes dispersion of repolarization, wavebreaks, and reentry. Recently, Re-ALT has been shown to play an important role in the transition from rapid pacing to atrial fibrillation (AF) in humans. The detailed kinetics of atrial Re-ALT, however, has not been reported so far. We developed a chronic free-behaving ovine pacing model to study the kinetics of atrial Re-ALT as a function of pacing rate. METHODS Thirteen sheep were chronically implanted with 2 pacemakers for the recording of broadband right atrial unipolar electrograms and delivery of rapid pacing protocols. Beat-to-beat differences in the atrial T-wave apex amplitude as a measure of Re-ALT and activation time were analyzed at incremental pacing rates until the effective refractory period (ERP) defined as stable 2:1 capture. RESULTS Atrial Re-ALT appeared intermittently but without periodicity, and increased in amplitude as a function of pacing rate until ERP. Intermittent 2:1 atrial capture was observed at pacing cycle lengths 40 ms above ERP, and increased in duration as a function of pacing rate. Episodes of rapid pacing-induced AF were rare, and were preceded by Re-ALT or complex oscillations of atrial repolarization, but without intermittent capture. CONCLUSION We show in vivo that atrial Re-ALT developed and increased in magnitude with rate until stable 2:1 capture. In rare instances where capture failure did not occur, Re-ALT and complex oscillations of repolarization surged and preceded AF initiation. (J Cardiovasc Electrophysiol, Vol. 23, pp. 1003-1012, September 2012).
Collapse
Affiliation(s)
- Florian Jousset
- Applied Signal Processing Group, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ridler ME, Lee M, McQueen D, Peskin C, Vigmond E. Arrhythmogenic consequences of action potential duration gradients in the atria. Can J Cardiol 2011; 27:112-9. [PMID: 21329870 DOI: 10.1016/j.cjca.2010.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/20/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Atrial action potential duration (APD) has been shown to decrease with increasing distance from the sinoatrial node in several species, including humans. This gradient has been postulated to be cardioprotective by reducing repolarization gradients. OBJECTIVES This study tests the effect of the APD gradient on reentry initiation and characteristics. METHODS This study used a geometrically accurate atrial computer model to examine arrhythmogenic consequences of an APD gradient on reentry initiation by ectopic beats applied at several locations. As well, dominant frequency maps of any ensuing reentries were analyzed to determine how APD gradients affected rotor behaviour. RESULTS When the APD gradient was increased, anatomic reentry that used the coronary sinus as a critical pathway was prevented, but initiation of functional reentry was unaffected. If a rotor did form, APD gradients led to more disorganized behaviour. For rotors circulating around the pulmonary veins, discrete interatrial coupling accounted for left atrium-right atrium frequency gradients, irrespective of an APD gradient. CONCLUSIONS Gradients are protective against anatomic reentry but also increase the complexity of arrhythmias that arise.
Collapse
Affiliation(s)
- Marc-Etienne Ridler
- Department of Geography and Geology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
21
|
Comtois P, Nattel S. Impact of tissue geometry on simulated cholinergic atrial fibrillation: a modeling study. CHAOS (WOODBURY, N.Y.) 2011; 21:013108. [PMID: 21456822 DOI: 10.1063/1.3544470] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Atrial fibrillation (AF), arising in the cardiac atria, is a common cardiac rhythm disorder that is incompletely understood. Numerous characteristics of the atrial tissue are thought to play a role in the maintenance of AF. Most traditional theoretical models of AF have considered the atrium to be a flat two-dimensional sheet. Here, we analyzed the relationship between atrial geometry, substrate size, and AF persistence, in a mathematical model involving heterogeneity. Spatially periodic properties were created by variations in times required for reactivation due to periodic acetylcholine concentration [ACh] distribution. The differences in AF maintenance between the sheet and the cylinder geometry are found for intermediate gradients of inexcitable time (intermediate [ACh]). The maximum difference in AF maintenance between geometry decreases with increasing tissue size, down to zero for a substrate of dimensions 20 × 10 cm. Generators have the tendency to be anchored to the regions of longer inexcitable period (low [ACh]). The differences in AF maintenance between geometries correlate with situations of moderate anchoring for which rotor-core drifts between low-[ACh] regions occur, favoring generator disappearance. The drift of generators increases their probability of disappearance at the tissue borders, resulting in a decreased maintenance rate in the sheet due to the higher number of no-flux boundaries. These interactions between biological variables and the role of geometry must be considered when selecting an appropriate model for AF in intact hearts.
Collapse
Affiliation(s)
- Philippe Comtois
- Department of Physiology and Institute of Biomedical Engineering, Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
22
|
JACQUES FRÉDERIC, CARDINAL RENÉ, YIN YALIN, ARMOUR JANDREW, GUIRAUDON GÉRARDM, JONES DOUGLASL, PAGÉ PIERRE. Spinal Cord Stimulation Causes Potentiation of Right Vagus Nerve Effects on Atrial Chronotropic Function and Repolarization in Canines. J Cardiovasc Electrophysiol 2010; 22:440-7. [DOI: 10.1111/j.1540-8167.2010.01915.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Cardinal R, Armour JA, Bouchard C, Vermeulen M, Vinet A, Nadeau R, Pagé P. Atrial Tachyarrhythmias and Repolarization Changes Induced by Discrete Activation of Dorsal Mediastinal Cardiac Nerves in Canines. Circ Arrhythm Electrophysiol 2010; 3:511-20. [DOI: 10.1161/circep.110.938050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Chronotropic “vagal responses” elicited by high-frequency stimulation have been used to identify atrial targets for ablative treatment of atrial tachyarrhythmias (AT), whereas an anatomic approach consisting of extensive ablation of the ganglionated plexus areas has been proposed as an alternative. Therefore, there is a need for precise delineation of juxtacardiac nerves involved in AT initiation and clarification of their regional influences throughout the atria in relation to AT sites of origin, beyond chronotropic effects related to sinus node modulation.
Methods and Results—
Unipolar electrograms were recorded from 191 biatrial epicardial sites in 13 anesthetized canines, with concomitant left atrial endocardial recording from 63 sites in 5 of 13 animals. When electric stimuli were delivered to dorsal mediastinal nerves during the atrial refractory period, atrial premature depolarizations initiating AT were elicited in all animals, most frequently without prior sinus cycle length modification. Among 63 episodes, the sites of origin of early AT beats were localized to (1) the posterolateral left atrial wall in the pulmonary vein region (33%), (2) superior left atrial loci along the Bachmann bundle (55%), and (3) the region of Bachmann bundle insertion into the superior right atrial wall (11%). Moreover, the AT sites of origin were spatially concordant with regional waveform changes during the repolarization phase of unipolar recordings. AT induction and repolarization changes were abolished after atropine administration.
Conclusions—
Activation of individual dorsal mediastinal nerves induces AT arising from distinct sites of origin which are spatially concordant with regional atrial repolarization changes.
Collapse
Affiliation(s)
- René Cardinal
- From the Centre de recherche (R.C., A.A., C.B., M.V., A.V., R.N., P.P.), Hôpital du Sacré-Cœur de Montréal, and the Departments of Pharmacology (R.C., A.A., C.B., M.V.) and Surgery (P.P.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - J. Andrew Armour
- From the Centre de recherche (R.C., A.A., C.B., M.V., A.V., R.N., P.P.), Hôpital du Sacré-Cœur de Montréal, and the Departments of Pharmacology (R.C., A.A., C.B., M.V.) and Surgery (P.P.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Caroline Bouchard
- From the Centre de recherche (R.C., A.A., C.B., M.V., A.V., R.N., P.P.), Hôpital du Sacré-Cœur de Montréal, and the Departments of Pharmacology (R.C., A.A., C.B., M.V.) and Surgery (P.P.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Michel Vermeulen
- From the Centre de recherche (R.C., A.A., C.B., M.V., A.V., R.N., P.P.), Hôpital du Sacré-Cœur de Montréal, and the Departments of Pharmacology (R.C., A.A., C.B., M.V.) and Surgery (P.P.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Alain Vinet
- From the Centre de recherche (R.C., A.A., C.B., M.V., A.V., R.N., P.P.), Hôpital du Sacré-Cœur de Montréal, and the Departments of Pharmacology (R.C., A.A., C.B., M.V.) and Surgery (P.P.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Réginald Nadeau
- From the Centre de recherche (R.C., A.A., C.B., M.V., A.V., R.N., P.P.), Hôpital du Sacré-Cœur de Montréal, and the Departments of Pharmacology (R.C., A.A., C.B., M.V.) and Surgery (P.P.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Pagé
- From the Centre de recherche (R.C., A.A., C.B., M.V., A.V., R.N., P.P.), Hôpital du Sacré-Cœur de Montréal, and the Departments of Pharmacology (R.C., A.A., C.B., M.V.) and Surgery (P.P.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
24
|
Weber FM, Schilling C, Seemann G, Luik A, Schmitt C, Lorenz C, Dössel O. Wave-Direction and Conduction-Velocity Analysis From Intracardiac Electrograms–A Single-Shot Technique. IEEE Trans Biomed Eng 2010; 57:2394-401. [PMID: 20595079 DOI: 10.1109/tbme.2010.2055056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Frank M Weber
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bates JHT, Spector PS. On the ill-conditioned nature of the intracardiac inverse problem. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:3929-31. [PMID: 19964323 DOI: 10.1109/iembs.2009.5333533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multi-electrode catheters can be placed transvenously and positioned on the atrial endocardial surface in order to sample the chaotic electrical activity taking place during atrial fibrillation. We consider here the possibility of placing an array of electrodes over a relatively small, and hence roughly planar, region of the atrial surface in order to examine local activity patterns. This provides a spatially coarse but temporally fine sampling of electrical activity that can be expressed at each point in time as the convolution of the true electrical excitation of the tissue with a hyperbolic point spread function. We demonstrate the deconvolution of sampled signals using a polynomial approximation of the true electrical activity. When the deconvolution is unconstrained the inverse problem is poorly conditioned, showing that a high spatial sampling rate is required for accurate reconstructions of atrial activity in the vicinity of the electrode array. We discuss ways in which the conditioning of the problem might be improved through the application of constraints on the solution.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont and Fletcher Allen Health Care, Burlington, VT 05405, USA.
| | | |
Collapse
|
26
|
Dubé B, Vinet A, Xiong F, Yin Y, LeBlanc AR, Pagé P. Automatic detection and classification of human epicardial atrial unipolar electrograms. Physiol Meas 2009; 30:1303-25. [PMID: 19843981 DOI: 10.1088/0967-3334/30/12/002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper describes an unsupervised signal processing method applied to three-channel unipolar electrograms recorded from human atria. These were obtained by epicardial wires sutured on the right and left atria after coronary artery bypass surgery. Atrial (A) and ventricular (V) activations had to be detected and identified on each channel, and gathered across the channels when belonging to the same global event. The algorithm was developed and optimized on a training set of 19 recordings of 5 min. It was assessed on twenty-seven 2 h recordings taken just before the onset of a prolonged atrial fibrillation for a total of 1593697 activations that were validated and classified as normal atrial or ventricular activations (A, V) and premature atrial or ventricular activations (PAA, PVA). 99.93% of the activations were detected, and amongst these, 99.89% of the A and 99.75% of the V activations were correctly labelled. In the subset of the 39705 PAA, 99.83% were detected and 99.3% were correctly classified as A. The false positive rate was 0.37%. In conclusion, a reliable fully automatic detection and classification algorithm was developed that can detect and discriminate A and V activations from atrial recordings. It can provide the time series needed to develop a monitoring system aiming to identify dynamic predictors of forthcoming cardiac events such as postoperative atrial fibrillation.
Collapse
Affiliation(s)
- B Dubé
- Research Center, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Potse M, Vinet A, Opthof T, Coronel R. Validation of a simple model for the morphology of the T wave in unipolar electrograms. Am J Physiol Heart Circ Physiol 2009; 297:H792-801. [PMID: 19465555 DOI: 10.1152/ajpheart.00064.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Local unipolar electrograms (UEGs) permit assessment of local activation and repolarization times at multiple sites simultaneously. However, UEG-based indexes of local repolarization are still debated, in particular for positive T waves. Previous experimental and computer modeling studies have not been able to terminate the debate. In this study we validate a simple theoretical model of the UEG and use it to explain how repolarization statistics in the UEG relate to those in the action potential. The model reconstructs the UEG by taking the difference between an inverted local action potential and a position-independent remote signal. In normal tissue, this extremely simple model predicts T-wave morphology with surprising accuracy while explaining in a readily understandable way why the instant of repolarization is always related to the steepest upstroke of the UEG, both in positive and negative T waves, and why positive T waves are related to early repolarizing sites, whereas negative T waves are related to late repolarizing sites.
Collapse
|
28
|
Grzeda KR, Noujaim SF, Berenfeld O, Jalife J. Complex fractionated atrial electrograms: properties of time-domain versus frequency-domain methods. Heart Rhythm 2009; 6:1475-82. [PMID: 19968928 DOI: 10.1016/j.hrthm.2009.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/07/2009] [Indexed: 11/29/2022]
Abstract
BACKGROUND Complex fractionated atrial electrograms (CFAEs) are thought to identify high-frequency electrical sources and have become an important target for radiofrequency ablation of atrial fibrillation (AF). Methods used to identify CFAEs and locate suitable ablation sites usually depend on subjective analysis of the electrograms but may also involve objective, computer-based paradigms through either time- or frequency-domain approaches. METHODS We generated a set of simulated test electrograms, which were defined by a combination of a basic cycle length, phase-resetting noise, and phase-preserving noise, accounting for far-field effects. The simulated electrograms were analyzed separately by well-known basic time-domain (complex fractionated electrogram [CFE]) and frequency-domain (dominant frequency [DF]) methods, and the results were compared with each other to determine objectively the potential reliability of either method to accurately estimate the cycle length of the atrial electrogram. RESULTS The behavior of the time-domain method depends on the assumed amplitude-sensitivity threshold and can be tuned to its optimal performance but only for signals having stable (and known a priori) amplitude. When the signal amplitude varies randomly (with +/-20% standard deviation range), the time-domain method loses performance. By contrast, the performance of the frequency-domain method remains stable. CONCLUSION Despite potentially good performance of time-domain methods to estimate the cycle length during AF and localize ablation sites, their performance is easily prone to degradation. The frequency-domain method seems to be much more robust.
Collapse
Affiliation(s)
- Krzysztof R Grzeda
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|