1
|
Sarkar S, K M, Varma HM. Tunable dynamical tissue phantom for laser speckle imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4737-4748. [PMID: 39347004 PMCID: PMC11427206 DOI: 10.1364/boe.528286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 10/01/2024]
Abstract
We introduce a novel method to design and implement a tunable dynamical tissue phantom for laser speckle-based in-vivo blood flow imaging. This approach relies on stochastic differential equations (SDE) to control a piezoelectric actuator which, upon illuminated with a laser source, generates speckles of pre-defined probability density function and auto-correlation. The validation experiments show that the phantom can generate dynamic speckles that closely replicate both surfaces as well as deep tissue blood flow for a reasonably wide range and accuracy.
Collapse
Affiliation(s)
- Soumyajit Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology - Bombay, Mumbai 400076, India
| | - Murali K
- Department of Biosciences and Bioengineering, Indian Institute of Technology - Bombay, Mumbai 400076, India
| | - Hari M Varma
- Department of Biosciences and Bioengineering, Indian Institute of Technology - Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Flowmotion imaging analysis of spatiotemporal variations in skin microcirculatory perfusion. Microvasc Res 2023; 146:104456. [PMID: 36403668 DOI: 10.1016/j.mvr.2022.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
|
3
|
Hultman M, Larsson M, Strömberg T, Fredriksson I. Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:036007. [PMID: 36950019 PMCID: PMC10027009 DOI: 10.1117/1.jbo.28.3.036007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 05/19/2023]
Abstract
SIGNIFICANCE Laser speckle contrast imaging (LSCI) gives a relative measure of microcirculatory perfusion. However, due to the limited information in single-exposure LSCI, models are inaccurate for skin tissue due to complex effects from e.g. static and dynamic scatterers, multiple Doppler shifts, and the speed-distribution of blood. It has been demonstrated how to account for these effects in laser Doppler flowmetry (LDF) using inverse Monte Carlo (MC) algorithms. This allows for a speed-resolved perfusion measure in absolute units %RBC × mm/s, improving the physiological interpretation of the data. Until now, this has been limited to a single-point LDF technique but recent advances in multi-exposure LSCI (MELSCI) enable the analysis in an imaging modality. AIM To present a method for speed-resolved perfusion imaging in absolute units %RBC × mm/s, computed from multi-exposure speckle contrast images. APPROACH An artificial neural network (ANN) was trained on a large simulated dataset of multi-exposure contrast values and corresponding speed-resolved perfusion. The dataset was generated using MC simulations of photon transport in randomized skin models covering a wide range of physiologically relevant geometrical and optical tissue properties. The ANN was evaluated on in vivo data sets captured during an occlusion provocation. RESULTS Speed-resolved perfusion was estimated in the three speed intervals 0 to 1 mm / s , 1 to 10 mm / s , and > 10 mm / s , with relative errors 9.8%, 12%, and 19%, respectively. The perfusion had a linear response to changes in both blood tissue fraction and blood flow speed and was less affected by tissue properties compared with single-exposure LSCI. The image quality was subjectively higher compared with LSCI, revealing previously unseen macro- and microvascular structures. CONCLUSIONS The ANN, trained on modeled data, calculates speed-resolved perfusion in absolute units from multi-exposure speckle contrast. This method facilitates the physiological interpretation of measurements using MELSCI and may increase the clinical impact of the technique.
Collapse
Affiliation(s)
- Martin Hultman
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
- Perimed AB, Stockholm, Sweden
- Address all correspondence to Martin Hultman,
| | - Marcus Larsson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Tomas Strömberg
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Ingemar Fredriksson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
- Perimed AB, Stockholm, Sweden
| |
Collapse
|
4
|
Guven G, Dijkstra A, Kuijper TM, Trommel N, van Baar ME, Topeli A, Ince C, van der Vlies CH. Comparison of laser speckle contrast imaging with laser Doppler perfusion imaging for tissue perfusion measurement. Microcirculation 2023; 30:e12795. [PMID: 36524297 PMCID: PMC10078364 DOI: 10.1111/micc.12795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Laser-based tissue perfusion monitoring techniques have been increasingly used in animal and human research to assess blood flow. However, these techniques use arbitrary units, and knowledge about their comparability is scarce. This study aimed to model the relationship between laser speckle contrast imaging (LSCI) and laser Doppler perfusion imaging (LDPI), for measuring tissue perfusion over a wide range of blood flux values. METHODS Fifteen healthy volunteers (53% female, median age 29 [IQR 22-40] years) were enrolled in this study. We performed iontophoresis with sodium nitroprusside on the forearm to induce regional vasodilation to increase skin blood flux. Besides, a stepwise vascular occlusion was applied on the contralateral upper arm to reduce blood flux. Both techniques were compared using a linear mixed model analysis. RESULTS Baseline blood flux values measured by LSCI were 33 ± 6.5 arbitrary unit (AU) (Coefficient of variation [CV] = 20%) and by LDPI 60 ± 11.5 AU (CV = 19%). At the end of the iontophoresis protocol, the regional blood flux increased to 724 ± 412% and 259 ± 87% of baseline measured by LDPI and LSCI, respectively. On the other hand, during the stepwise vascular occlusion test, the blood flux reduced to 212 ± 40% and 412 ± 177% of its baseline at LDPI and LSCI, respectively. A strong correlation was found between the LSCI and LDPI instruments at increased blood flux with respect to baseline skin blood flux; however, the correlation was weak at reduced blood flux with respect to baseline. DISCUSSION LSCI and LDPI instruments are highly linear for blood flux higher than baseline skin blood flux; however, the correlation decreased for blood flux lower than baseline. This study's findings could be a basis for using LSCI in specific patient populations, such as burn care.
Collapse
Affiliation(s)
- Goksel Guven
- Department of Intensive Care, Erasmus MC, Rotterdam, The Netherlands.,Departments of Trauma and Burn Surgery, Maasstad Ziekenhuis, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Intensive Care, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Annemieke Dijkstra
- Departments of Trauma and Burn Surgery, Maasstad Ziekenhuis, Rotterdam, The Netherlands
| | | | - Nicole Trommel
- Departments of Trauma and Burn Surgery, Maasstad Ziekenhuis, Rotterdam, The Netherlands
| | | | - Arzu Topeli
- Department of Internal Medicine, Division of Intensive Care, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Ince
- Department of Intensive Care, Erasmus MC, Rotterdam, The Netherlands
| | - Cornelis Hendrik van der Vlies
- Departments of Trauma and Burn Surgery, Maasstad Ziekenhuis, Rotterdam, The Netherlands.,Trauma Research Unit Department of Surgery, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Allan D, Chockalingam N, Naemi R. Validation of a non-invasive imaging photoplethysmography device to assess plantar skin perfusion, a comparison with laser speckle contrast analysis. J Med Eng Technol 2021; 45:170-176. [PMID: 33750251 DOI: 10.1080/03091902.2021.1891309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Assessing skin perfusion is an established and reliable method to study impaired lower limb blood flow. Laser Speckle Contrast Analysis (LASCA) has been identified as the current gold standard to measure skin perfusion. Imaging photoplethysmography (iPPG) is a new low-cost imaging technique to assess perfusion. However, it is unclear how results obtained from this technique compare against that of LASCA at plantar skin. Therefore, the aim of this study was to investigate the association between the skin perfusion at the plantar surface of the foot using iPPG and LASCA. Perfusion at six plantar locations (Hallux, 1st 3rd 5th metatarsal heads, midfoot, heel) was simultaneously measured using LASCA and iPPG in 20 healthy participants. Skin thickness and skin temperature were also collected at the same plantar locations. Spearman's rank tests showed significant associations with medium strength between the perfusion values measured with LASCA and iPPG for most tested sites. No improvement in the relationship between iPPG and LASCA data was observed when controlling for either skin thickness or skin temperature. Skin perfusion values obtained using iPPG were found to be significantly associated with the corresponding values obtained using the gold standard LASCA device. Additionally, the measurement of perfusion using iPPG is shown to be robust.
Collapse
Affiliation(s)
- David Allan
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| | - Nachiappan Chockalingam
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| | - Roozbeh Naemi
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| |
Collapse
|
6
|
Chen C, Zhang M, Yu N, Zhang W, Long X, Wang Y, Wang X. Heterogeneous Features of Keloids Assessed by Laser Speckle Contrast Imaging: A Cross-Sectional Study. Lasers Surg Med 2020; 53:865-871. [PMID: 33027537 DOI: 10.1002/lsm.23331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/01/2020] [Accepted: 09/20/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Keloids are described as benign dermal fibroproliferative lesions, and vascularization may play a significant role in their pathogenesis. In this study, laser speckle contrast imaging (LSCI) was used to assess perfusion within keloids and surrounding skin, and perfusion of keloids at different stages was compared. STUDY DESIGN/MATERIALS AND METHODS A total of 59 patients with 110 untreated keloids on the anterior chest were enrolled in this study. Different keloid stages (progressive, stable, and regressive) were defined according to patients' descriptions of whether keloids became larger, stable, or smaller during the previous year. Vancouver Scar Scale (VSS) was assessed by a plastic surgeon, and patient reports on pain and itching were documented. LSCI was used to evaluate blood perfusion of keloids (K), skin adjacent to keloids (A), and nonadjacent skin (N). The mean perfusion of these regions was determined, and ratios (K/N, A/N) were calculated. RESULTS A heterogeneous perfusion map was observed among the keloid groups, as well as within each keloid. A positive correlation was found between keloid perfusion and VSS. There were 62 (56.4%) keloids in the progressive stage, 33 (30.0%) keloids in the stable stage, and 15 (13.6%) keloids in the regressive stage. The mean K/N ratios in the progressive, stable, and regressive stages were 2.3 ± 0.5, 1.8 ± 0.3, and 1.5 ± 0.5, respectively. The mean A/N ratios were 1.2 ± 0.4, 1.2 ± 0.2, and 1.0 ± 0.5, respectively. Within each keloid, significantly higher perfusion was noted in the keloid and adjacent skin compared with nonadjacent skin. CONCLUSION These results indicate that LSCI is a promising technique for evaluating keloid blood perfusion and distinguishing heterogeneous keloids. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.,Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenchao Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiao Long
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
7
|
The preliminary validation of laser Doppler flowmetry in systemic sclerosis in accordance with the OMERACT filter: A systematic review. Semin Arthritis Rheum 2020; 50:321-328. [DOI: 10.1016/j.semarthrit.2019.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/09/2019] [Accepted: 08/21/2019] [Indexed: 11/20/2022]
|
8
|
Mizeva I, Dremin V, Potapova E, Zherebtsov E, Kozlov I, Dunaev A. Wavelet Analysis of the Temporal Dynamics of the Laser Speckle Contrast in Human Skin. IEEE Trans Biomed Eng 2019; 67:1882-1889. [PMID: 31675309 DOI: 10.1109/tbme.2019.2950323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Spectral analysis of laser Doppler flowmetry (LDF) signals has been widely used in studies of physiological vascular function regulation. An alternative to LDF is the laser speckle contrast imaging method (LSCI), which is based on the same physical principle. In contrast to LDF, LSCI provides non-scanning full-field imaging of a relatively wide skin area and offers high spatial and temporal resolutions, which allows visualization of microvascular structure. This circumstance, together with a large number of works which had shown the effectiveness of temporal LSCI analysis, gave impetus to experimental studies of the relation between LDF and LSCI used to monitor the temporal dynamics of blood flow. METHODS Continuous wavelet transform was applied to construct a time-frequency representation of a signal. RESULTS Analysis of 10 minute LDF and LSCI output signals recorded simultaneously revealed rather high correlation between oscillating components. It was demonstrated for the first time that the spectral energy of oscillations in the 0.01-2 Hz frequency range of temporal LSCI recordings carries the same information as the conventional LDF recordings and hence it reflects the same physiological vascular tone regulation mechanisms. CONCLUSION The approach proposed can be used to investigate speckle pattern dynamics by LSCI in both normal and pathological conditions. SIGNIFICANCE The results of research on the influence of spatial binning and averaging on the spectral characteristics of perfusion monitored by LSCI are of considerable interest for the development of LSCI systems optimized to evaluate temporal dynamics.
Collapse
|
9
|
Fredriksson I, Hultman M, Strömberg T, Larsson M. Machine learning in multiexposure laser speckle contrast imaging can replace conventional laser Doppler flowmetry. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 30675771 PMCID: PMC6985684 DOI: 10.1117/1.jbo.24.1.016001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/17/2018] [Indexed: 05/20/2023]
Abstract
Laser speckle contrast imaging (LSCI) enables video rate imaging of blood flow. However, its relation to tissue blood perfusion is nonlinear and depends strongly on exposure time. By contrast, the perfusion estimate from the slower laser Doppler flowmetry (LDF) technique has a relationship to blood perfusion that is better understood. Multiexposure LSCI (MELSCI) enables a perfusion estimate closer to the actual perfusion than that using a single exposure time. We present and evaluate a method that utilizes contrasts from seven exposure times between 1 and 64 ms to calculate a perfusion estimate that resembles the perfusion estimate from LDF. The method is based on artificial neural networks (ANN) for fast and accurate processing of MELSCI contrasts to perfusion. The networks are trained using modeling of Doppler histograms and speckle contrasts from tissue models. The importance of accounting for noise is demonstrated. Results show that by using ANN, MELSCI data can be processed to LDF perfusion with high accuracy, with a correlation coefficient R = 1.000 for noise-free data, R = 0.993 when a moderate degree of noise is present, and R = 0.995 for in vivo data from an occlusion-release experiment.
Collapse
Affiliation(s)
- Ingemar Fredriksson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
- Perimed AB, Stockholm, Sweden
| | - Martin Hultman
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Tomas Strömberg
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Marcus Larsson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| |
Collapse
|
10
|
Berezhnoi A, Schwarz M, Buehler A, Ovsepian SV, Aguirre J, Ntziachristos V. Assessing hyperthermia-induced vasodilation in human skin in vivo using optoacoustic mesoscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700359. [PMID: 29573174 DOI: 10.1002/jbio.201700359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/14/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to explore the unique imaging abilities of optoacoustic mesoscopy to visualize skin structures and microvasculature with the view of establishing a robust approach for monitoring heat-induced hyperemia in human skin in vivo. Using raster-scan optoacoustic mesoscopy (RSOM), we investigated whether optoacoustic (photoacoustic) mesoscopy can identify changes in skin response to local heating at microvasculature resolution in a cross-sectional fashion through skin in the human forearm. We visualized the heat-induced hyperemia for the first time with single-vessel resolution throughout the whole skin depth. We quantified changes in total blood volume in the skin and their correlation with local heating. In response to local heating, total blood volume increased 1.83- and 1.76-fold, respectively, in the volar and dorsal aspects of forearm skin. We demonstrate RSOM imaging of the dilation of individual vessels in the skin microvasculature, consistent with hyperemic response to heating at the skin surface. Our results demonstrate great potential of RSOM for elucidating the morphology, functional state and reactivity of dermal microvasculature, with implications for diagnostics and disease monitoring. Image: Cross-sectional view of skin microvasculature dilated in response to hyperthermia.
Collapse
Affiliation(s)
- Andrei Berezhnoi
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mathias Schwarz
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- iThera Medical GmbH, Munich, Germany
| | - Andreas Buehler
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Saak V Ovsepian
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juan Aguirre
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
11
|
Zötterman J, Bergkvist M, Iredahl F, Tesselaar E, Farnebo S. Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging. J Plast Reconstr Aesthet Surg 2016; 69:936-43. [PMID: 27026039 DOI: 10.1016/j.bjps.2016.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 01/28/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND In microsurgery, there is a demand for more reliable methods of post-operative monitoring of free flaps, especially with regard to tissue-threatening obstructions of the feeding arteries and draining veins. In this study, we evaluated laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) to assess their possibilities to detect partial and full venous outflow obstruction, as well as full arterial occlusion, in a porcine flap model. METHODS Cranial gluteal artery perforator flaps (CGAPs) were raised, and arterial and venous blood flow to and from the flaps was monitored using ultrasonic flow probes. The venous flow was altered with an inflatable cuff to simulate partial and full (50% and 100%) venous obstruction, and arterial flow was completely obstructed using clamps. The flap microcirculation was monitored using LSCI and LDF. RESULTS Both LDF and the LSCI detected significant changes in flap perfusion. After partial (50%) venous occlusion, perfusion decreased from baseline, LSCI: 63.5 ± 12.9 PU (p = 0.01), LDF 31.3 ± 15.7 (p = 0.64). After 100% venous occlusion, a further decrease in perfusion was observed: LSCI 54.6 ± 14.2 PU (p < 0.001) and LDF 16.7 ± 12.8 PU (p < 0.001). After release of the venous cuff, LSCI detected a return of the perfusion to a level slightly, but not significantly, below the baseline level 70.1 ± 11.5 PU (p = 0.39), while the LDF signal returned to a level not significant from the baseline 36.1 ± 17.9 PU (p > 0.99). Perfusion during 100% arterial occlusion decreased significantly as measured with both methods, LSCI: 48.3 ± 7.7 (PU, p < 0.001) and LDF: 8.5 ± 4.0 PU (p < 0.001). During 50% and 100% venous occlusion, LSCI showed a 20% and 26% intersubject variability (CV%), respectively, compared to 50% and 77% for LDF. CONCLUSIONS LSCI offers sensitive and reproducible measurements of flap microcirculation and seems more reliable in detecting decreases in blood perfusion caused by venous obstruction. It also allows for perfusion measurements in a relatively large area of flap tissue. This may be useful in identifying areas of the flap with compromised microcirculation during and after surgery.
Collapse
Affiliation(s)
- Johan Zötterman
- Department of Hand and Plastic Surgery and Burns, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Max Bergkvist
- Department of Hand and Plastic Surgery and Burns, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Fredrik Iredahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Erik Tesselaar
- Department of Radiation Physics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Simon Farnebo
- Department of Hand and Plastic Surgery and Burns, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Chen D, Ren J, Wang Y, Zhao H, Li B, Gu Y. Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains. Photodiagnosis Photodyn Ther 2015; 13:1-9. [PMID: 26592337 DOI: 10.1016/j.pdpdt.2015.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Laser Doppler imaging (LDI) and laser speckle imaging (LSI) are two major optical techniques aiming at non-invasively imaging the skin blood perfusion. However, the relationship between perfusion values determined by LDI and LSI has not been fully explored. METHODS 8 healthy volunteers and 13 PWS patients were recruited. The perfusions in normal skin on the forearm of 8 healthy volunteers were simultaneously measured by both LDI and LSI during post-occlusive reactive hyperemia (PORH). Furthermore, the perfusions of port wine stains (PWS) lesions and contralateral normal skin of 10 PWS patients were also determined. In addition, the perfusions for PWS lesions from 3 PWS patients were successively monitored at 0, 10 and 20min during vascular-targeted photodynamic therapy (V-PDT). The average perfusion values determined by LSI were compared with those of LDI for each subject. RESULTS In the normal skin during PORH, power function provided better fits of perfusion values than linear function: powers for individual subjects go from 1.312 to 1.942 (R(2)=0.8967-0.9951). There was a linear relationship between perfusion values determined by LDI and LSI in PWS and contralateral normal skin (R(2)=0.7308-0.9623), and in PWS during V-PDT (R(2)=0.8037-0.9968). CONCLUSION The perfusion values determined by LDI and LSI correlate closely in normal skin and PWS over a broad range of skin perfusion. However, it still suggests that perfusion range and characteristics of the measured skin should be carefully considered if LDI and LSI measures are compared.
Collapse
Affiliation(s)
- Defu Chen
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Ren
- Department of Laser Medicine, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ying Wang
- Department of Laser Medicine, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Hongyou Zhao
- Department of Laser Medicine, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Buhong Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fujian 350007, China
| | - Ying Gu
- Department of Laser Medicine, Chinese People's Liberation Army General Hospital, Beijing 100853, China.
| |
Collapse
|
13
|
Humeau-Heurtier A, Mahé G, Abraham P. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm. Microvasc Res 2015; 98:54-61. [PMID: 25576743 DOI: 10.1016/j.mvr.2014.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
Laser speckle contrast imaging (LSCI) is a full-field optical technique to monitor microvascular blood flow with high spatial and temporal resolutions. It is used in many medical fields such as dermatology, vascular medicine, or neurosciences. However, LSCI leads to a large amount of data: image sampling frequency is often of several Hz and recordings usually last several minutes. Therefore, clinicians often perform regions of interest in which a spatial averaging of blood flow is performed and the result is followed with time. Unfortunately, this leads to a poor spatial resolution for the analyzed data. At the same time, a higher spatial resolution for the perfusion maps is wanted. To get over this dilemma we propose a new post-acquisition visual representation for LSCI perfusion data using the so-called generalized differences (GD) algorithm. From a stack of perfusion images, the procedure leads to a new single image with the same spatial resolution as the original images and this new image reflects perfusion changes. The algorithm is herein applied on simulated stacks of images and on experimental LSCI perfusion data acquired in three different situations with a commercialized laser speckle contrast imager. The results show that the GD algorithm provides a new way of visualizing LSCI perfusion data.
Collapse
Affiliation(s)
- Anne Humeau-Heurtier
- University of Angers, LARIS - Laboratoire Angevin de Recherche en Ingénierie des Systèmes, 62 Avenue Notre-Dame du Lac, 49000 Angers, France.
| | - Guillaume Mahé
- University of Rennes 1, CHU of Rennes, Pôle Imagerie Médicale et Explorations Fonctionnelles, 35033 Rennes Cedex 9, France; INSERM, CIC 1414 "Ischemia, Macro and Microcirculation" Group, 35033 Rennes Cedex 9, France
| | - Pierre Abraham
- University of Angers, CHU of Angers, Laboratoire de Physiologie et d'Explorations Vasculaires, UMR CNRS 6214-INSERM 1083, 49033 Angers Cedex 01, France
| |
Collapse
|
14
|
Eriksson S, Nilsson J, Sturesson C. Non-invasive imaging of microcirculation: a technology review. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2014; 7:445-52. [PMID: 25525397 PMCID: PMC4267586 DOI: 10.2147/mder.s51426] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microcirculation plays a crucial role in physiological processes of tissue oxygenation and nutritional exchange. Measurement of microcirculation can be applied on many organs in various pathologies. In this paper we aim to review the technique of non-invasive methods for imaging of the microcirculation. Methods covered are: videomicroscopy techniques, laser Doppler perfusion imaging, and laser speckle contrast imaging. Videomicroscopy techniques, such as orthogonal polarization spectral imaging and sidestream dark-field imaging, provide a plentitude of information and offer direct visualization of the microcirculation but have the major drawback that they may give pressure artifacts. Both laser Doppler perfusion imaging and laser speckle contrast imaging allow non-contact measurements but have the disadvantage of their sensitivity to motion artifacts and that they are confined to relative measurement comparisons. Ideal would be a non-contact videomicroscopy method with fully automatic analysis software.
Collapse
Affiliation(s)
- Sam Eriksson
- Department of Surgery, Clinical Sciences Lund, Lund University, Lund, Sweden ; Skåne University Hospital, Lund, Sweden
| | - Jan Nilsson
- Department of Surgery, Clinical Sciences Lund, Lund University, Lund, Sweden ; Skåne University Hospital, Lund, Sweden
| | - Christian Sturesson
- Department of Surgery, Clinical Sciences Lund, Lund University, Lund, Sweden ; Skåne University Hospital, Lund, Sweden
| |
Collapse
|
15
|
Multiscale Compression Entropy of Microvascular Blood FlowSignals: Comparison of Results from Laser Speckle Contrastand Laser Doppler Flowmetry Data in Healthy Subjects. ENTROPY 2014. [DOI: 10.3390/e16115777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Allen J, Howell K. Microvascular imaging: techniques and opportunities for clinical physiological measurements. Physiol Meas 2014; 35:R91-R141. [DOI: 10.1088/0967-3334/35/7/r91] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Humeau-Heurtier A, Abraham P, Mahe G. Linguistic Analysis of Laser Speckle Contrast Images Recorded at Rest and During Biological Zero: Comparison With Laser Doppler Flowmetry Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:2311-2321. [PMID: 24058017 DOI: 10.1109/tmi.2013.2281620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Laser speckle contrast imaging (LSCI) is a newly commercialized imaging modality to monitor microvascular blood flow. Contrary to the well-known laser Doppler flowmetry (LDF), LSCI has the advantage of giving a full-field image of surface blood flow using simple instrumentation. However, laser speckle contrast images are not fully understood yet and their link with LDF signals still has to be studied. To quantify the similarity between LSCI and LDF symbolic sequences, we propose to use, for the first time, the index adapted from linguistic analysis and information theory proposed by Yang For this purpose, LSCI and LDF data were recorded simultaneously on the forearm of healthy subjects, at rest and during a vascular occlusion (biological zero). We show that there are different dynamical patterns for LSCI and LDF data, and the distances between these patterns differ through the space scales explored. Moreover, our results suggest that these different dynamical patterns could be linked to blood flow. The quantitative metric used herein therefore provides new information on LSCI and brings knowledge on links between LSCI and LDF.
Collapse
|
18
|
Ruaro B, Sulli A, Alessandri E, Pizzorni C, Ferrari G, Cutolo M. Laser speckle contrast analysis: a new method to evaluate peripheral blood perfusion in systemic sclerosis patients. Ann Rheum Dis 2013; 73:1181-5. [PMID: 23956248 DOI: 10.1136/annrheumdis-2013-203514] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The aim of this pilot study was to assess peripheral blood perfusion (PBP) by a new technique, the laser speckle contrast analysis (LASCA), in systemic sclerosis (SSc) patients showing different patterns of nailfold microangiopathy. Correlations between LASCA and single laser Doppler flowmetry (LDF) analysis were also checked. METHODS Sixty-one SSc patients and 61 healthy subjects were enrolled. PBP was evaluated using LASCA and LDF. Scleroderma patterns and microangiopathy evolution score (MES) were assessed by nailfold videocapillaroscopy (NVC). RESULTS As detected by LASCA and LDF, PBP was lower in SSc patients than in healthy subjects (p<0.0001), showing SSc patients with the 'Early', 'Active' or 'Late' NVC pattern a progressively lower PBP (p=0.04 and p=0.002, respectively). There was a negative correlation between PBP and MES values (p=0.006 and p=0.002 for LASCA and LDF, respectively). A positive correlation was detected between LASCA and LDF values, in all subjects (p<0.0001). However, LASCA evaluates larger skin areas, is significantly less time consuming, is more accepted by patients and shows lower intra-operator variability than LDF. CONCLUSIONS LASCA detected lower PBP in SSc patients than in healthy subjects, and for the first time, LASCA perfusion values were found correlated with progression of NVC patterns of microangiopathy.
Collapse
Affiliation(s)
- Barbara Ruaro
- Research Laboratory and Academic Unit of Clinical Rheumatology, Department of Internal Medicine, University of Genova, , Genoa, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Humeau-Heurtier A, Guerreschi E, Abraham P, Mahe G. Relevance of Laser Doppler and Laser Speckle Techniques for Assessing Vascular Function: State of the Art and Future Trends. IEEE Trans Biomed Eng 2013; 60:659-66. [DOI: 10.1109/tbme.2013.2243449] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|