1
|
Sparacino L, Antonacci Y, Barà C, Švec D, Javorka M, Faes L. A method to assess linear self-predictability of physiologic processes in the frequency domain: application to beat-to-beat variability of arterial compliance. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1346424. [PMID: 38638612 PMCID: PMC11024367 DOI: 10.3389/fnetp.2024.1346424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
The concept of self-predictability plays a key role for the analysis of the self-driven dynamics of physiological processes displaying richness of oscillatory rhythms. While time domain measures of self-predictability, as well as time-varying and local extensions, have already been proposed and largely applied in different contexts, they still lack a clear spectral description, which would be significantly useful for the interpretation of the frequency-specific content of the investigated processes. Herein, we propose a novel approach to characterize the linear self-predictability (LSP) of Gaussian processes in the frequency domain. The LSP spectral functions are related to the peaks of the power spectral density (PSD) of the investigated process, which is represented as the sum of different oscillatory components with specific frequency through the method of spectral decomposition. Remarkably, each of the LSP profiles is linked to a specific oscillation of the process, and it returns frequency-specific measures when integrated along spectral bands of physiological interest, as well as a time domain self-predictability measure with a clear meaning in the field of information theory, corresponding to the well-known information storage, when integrated along the whole frequency axis. The proposed measure is first illustrated in a theoretical simulation, showing that it clearly reflects the degree and frequency-specific location of predictability patterns of the analyzed process in both time and frequency domains. Then, it is applied to beat-to-beat time series of arterial compliance obtained in young healthy subjects. The results evidence that the spectral decomposition strategy applied to both the PSD and the spectral LSP of compliance identifies physiological responses to postural stress of low and high frequency oscillations of the process which cannot be traced in the time domain only, highlighting the importance of computing frequency-specific measures of self-predictability in any oscillatory physiologic process.
Collapse
Affiliation(s)
- Laura Sparacino
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Chiara Barà
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Dávid Švec
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Javorka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Lazic I, Pernice R, Loncar-Turukalo T, Mijatovic G, Faes L. Assessment of Cardiorespiratory Interactions during Apneic Events in Sleep via Fuzzy Kernel Measures of Information Dynamics. ENTROPY 2021; 23:e23060698. [PMID: 34073121 PMCID: PMC8227407 DOI: 10.3390/e23060698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/26/2023]
Abstract
Apnea and other breathing-related disorders have been linked to the development of hypertension or impairments of the cardiovascular, cognitive or metabolic systems. The combined assessment of multiple physiological signals acquired during sleep is of fundamental importance for providing additional insights about breathing disorder events and the associated impairments. In this work, we apply information-theoretic measures to describe the joint dynamics of cardiorespiratory physiological processes in a large group of patients reporting repeated episodes of hypopneas, apneas (central, obstructive, mixed) and respiratory effort related arousals (RERAs). We analyze the heart period as the target process and the airflow amplitude as the driver, computing the predictive information, the information storage, the information transfer, the internal information and the cross information, using a fuzzy kernel entropy estimator. The analyses were performed comparing the information measures among segments during, immediately before and after the respiratory event and with control segments. Results highlight a general tendency to decrease of predictive information and information storage of heart period, as well as of cross information and information transfer from respiration to heart period, during the breathing disordered events. The information-theoretic measures also vary according to the breathing disorder, and significant changes of information transfer can be detected during RERAs, suggesting that the latter could represent a risk factor for developing cardiovascular diseases. These findings reflect the impact of different sleep breathing disorders on respiratory sinus arrhythmia, suggesting overall higher complexity of the cardiac dynamics and weaker cardiorespiratory interactions which may have physiological and clinical relevance.
Collapse
Affiliation(s)
- Ivan Lazic
- Department of Power, Electronic and Communication Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
- Correspondence: (I.L.); (T.L.-T.)
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (R.P.); (L.F.)
| | - Tatjana Loncar-Turukalo
- Department of Power, Electronic and Communication Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
- Correspondence: (I.L.); (T.L.-T.)
| | - Gorana Mijatovic
- Department of Power, Electronic and Communication Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (R.P.); (L.F.)
| |
Collapse
|
3
|
Catrambone V, Talebi A, Barbieri R, Valenza G. Time-resolved Brain-to-Heart Probabilistic Information Transfer Estimation Using Inhomogeneous Point-Process Models. IEEE Trans Biomed Eng 2021; 68:3366-3374. [DOI: 10.1109/tbme.2021.3071348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vincenzo Catrambone
- Research Center E. Piaggio, Information Engineering, University of Pisa, 9310 Pisa, Toscana, Italy, (e-mail: )
| | - Alireza Talebi
- Research Center E. Piaggio, Information Engineering, University of Pisa, 9310 Pisa, Toscana, Italy, (e-mail: )
| | | | - Gaetano Valenza
- Research Center E. Piaggio, Information Engineering, University of Pisa, 9310 Pisa, Toscana, Italy, (e-mail: )
| |
Collapse
|
4
|
Mijatovic G, Pernice R, Perinelli A, Antonacci Y, Busacca A, Javorka M, Ricci L, Faes L. Measuring the Rate of Information Exchange in Point-Process Data With Application to Cardiovascular Variability. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:765332. [PMID: 36925567 PMCID: PMC10013020 DOI: 10.3389/fnetp.2021.765332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/26/2021] [Indexed: 02/01/2023]
Abstract
The amount of information exchanged per unit of time between two dynamic processes is an important concept for the analysis of complex systems. Theoretical formulations and data-efficient estimators have been recently introduced for this quantity, known as the mutual information rate (MIR), allowing its continuous-time computation for event-based data sets measured as realizations of coupled point processes. This work presents the implementation of MIR for point process applications in Network Physiology and cardiovascular variability, which typically feature short and noisy experimental time series. We assess the bias of MIR estimated for uncoupled point processes in the frame of surrogate data, and we compensate it by introducing a corrected MIR (cMIR) measure designed to return zero values when the two processes do not exchange information. The method is first tested extensively in synthetic point processes including a physiologically-based model of the heartbeat dynamics and the blood pressure propagation times, where we show the ability of cMIR to compensate the negative bias of MIR and return statistically significant values even for weakly coupled processes. The method is then assessed in real point-process data measured from healthy subjects during different physiological conditions, showing that cMIR between heartbeat and pressure propagation times increases significantly during postural stress, though not during mental stress. These results document that cMIR reflects physiological mechanisms of cardiovascular variability related to the joint neural autonomic modulation of heart rate and arterial compliance.
Collapse
Affiliation(s)
- Gorana Mijatovic
- Faculty of Technical Science, University of Novi Sad, Novi Sad, Serbia
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Alessio Perinelli
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Yuri Antonacci
- Department of Physics and Chemistry "Emilio Segrè," University of Palermo, Palermo, Italy
| | | | - Michal Javorka
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Leonardo Ricci
- Department of Physics, University of Trento, Trento, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Talebi A, Catrambone V, Barbieri R, Valenza G. An Inhomogeneous Point-process Model for the Assessment of the Brain-to-Heart Functional Interplay: a Pilot Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:557-560. [PMID: 33018050 DOI: 10.1109/embc44109.2020.9175750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We propose a novel computational framework for the estimation of functional directional brain-to-heart interplay in an instantaneous fashion. The framework is based on inhomogeneous point-process models for human heartbeat dynamics and employs inverse-Gaussian probability density functions characterizing the timing of R-peak events. The instantaneous estimation of the functional directional coupling is based on the definition of point-process transfer entropy, which is here retrieved from heart rate variability (HRV) and Electroencephalography (EEG) power spectral series gathered from 12 healthy subjects undergoing significant sympathovagal changes induced by a cold-pressor test. Results suggest that EEG oscillations dynamically influence heartbeat dynamics with specific time delays in the 30-60s and 90-120s ranges, and through a functional activity over specific cortical regions.
Collapse
|
6
|
Młyńczak M, Krysztofiak H. Cardiorespiratory Temporal Causal Links and the Differences by Sport or Lack Thereof. Front Physiol 2019; 10:45. [PMID: 30804797 PMCID: PMC6370652 DOI: 10.3389/fphys.2019.00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/16/2019] [Indexed: 01/12/2023] Open
Abstract
Fitness level, fatigue and adaptation are important factors for determining the optimal training schedule and predicting future performance. We think that adding analysis of the mutual relationships between cardiac and respiratory activity enables better athlete profiling and feedback for improving training. Therefore, the main objectives were (1) to apply several methods for temporal causality analysis to cardiorespiratory data; (2) to establish causal links between the signals; and (3) to determine how parameterized connections differed across various subgroups. One hundred elite athletes (31 female) and a control group of 20 healthy students (6 female) took part in the study. All were asked to follow a protocol comprising two 5-min sessions of free breathing - once supine, once standing. The data were collected using Pneumonitor 2. Respiratory-related curves were obtained through impedance pneumography, along with a single-lead ECG. Several signals (e.g., tidal volume, instantaneous respiratory rate, and instantaneous heart rate) were derived and stored as: (1) raw data down-sampled to 25Hz; (2) further down-sampled to 2.5Hz; and (3) beat-by-beat sequences. Granger causality frameworks (pairwise-conditional, spectral or extended), along with Time Series Models with Independent Noise (TiMINo), were studied. The connections enabling the best distinctions were found using recursive feature elimination with a random forest kernel. Temporal causal links are the most evident between tidal volume and instantaneous heart rate signals. Predictions of the “effect” variable were improved by adding preceding “cause” samples, by medians of 20.3% for supine and 14.2% for standing body positions. Parameterized causal link structures and directions distinguish athletes from non-athletes with 83.3% accuracy on average. They may also be used to supplement standard analysis and enable classification into groups exhibiting different static and dynamic components during performance. Physiological markers of training may be extended to include cardiorespiratory data, and causality analysis may improve the resolution of training profiling and the precision of outcome prediction.
Collapse
Affiliation(s)
- Marcel Młyńczak
- Warsaw University of Technology, Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw, Poland
| | - Hubert Krysztofiak
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Miura S, Kawamura K, Kobayashi Y, Fujie MG. Using Brain Activation to Evaluate Arrangements Aiding Hand-Eye Coordination in Surgical Robot Systems. IEEE Trans Biomed Eng 2018; 66:2352-2361. [PMID: 30582521 DOI: 10.1109/tbme.2018.2889316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GOAL To realize intuitive, minimally invasive surgery, surgical robots are often controlled using master-slave systems. However, the surgical robot's structure often differs from that of the human body, so the arrangement between the monitor and master must reflect this physical difference. In this study, we validate the feasibility of an embodiment evaluation method that determines the arrangement between the monitor and master. In our constructed cognitive model, the brain's intraparietal sulcus activates significantly when somatic and visual feedback match. Using this model, we validate a cognitively appropriate arrangement between the monitor and master. METHODS In experiments, we measure participants' brain activation using an imaging device as they control the virtual surgical simulator. Two experiments are carried out that vary the monitor and hand positions. CONCLUSION There are two common arrangements of the monitor and master at the brain activation's peak: One is placing the monitor behind the master, so the user feels that the system is an extension of his arms into the monitor; the other arranges the monitor in front of the master, so the user feels the correspondence between his own arm and the virtual arm in the monitor. SIGNIFICANCE From these results, we conclude that the arrangement between the monitor and master impacts embodiment, enabling the participant to feel apparent posture matches in master-slave surgical robot systems.
Collapse
|
8
|
Młyńczak M, Krysztofiak H. Discovery of Causal Paths in Cardiorespiratory Parameters: A Time-Independent Approach in Elite Athletes. Front Physiol 2018; 9:1455. [PMID: 30425645 PMCID: PMC6218878 DOI: 10.3389/fphys.2018.01455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
Training of elite athletes requires regular physiological and medical monitoring to plan the schedule, intensity and volume of training, and subsequent recovery. In sports medicine, ECG-based analyses are well-established. However, they rarely consider the correspondence of respiratory and cardiac activity. Given such mutual influence, we hypothesize that athlete monitoring might be developed with causal inference and that detailed, time-related techniques should be preceded by a more general, time-independent approach that considers the whole group of participants and parameters describing whole signals. The aim of this study was to discover general causal paths among cardiac and respiratory variables in elite athletes in two body positions (supine and standing), at rest. ECG and impedance pneumography signals were obtained from 100 elite athletes. The mean heart rate, the root-mean-square difference of successive RR intervals (RMSSD), its natural logarithm (lnRMSSD), the mean respiratory rate (RR), the breathing activity coefficients, and the resulting breathing regularity (BR) were estimated. Several causal discovery frameworks were applied, comprising Generalized Correlations (GC), Causal Additive Modeling (CAM), Fast Greedy Equivalence Search (FGES), Greedy Fast Causal Inference (GFCI), and two score-based Bayesian network learning algorithms: Hill-Climbing (HC) and Tabu Search. The discovery of cardiorespiratory paths appears ambiguous. The main, still mild, rules best supported by data are: for supine - tidal volume causes heart activity variation, which causes average heart activity, which causes respiratory timing; and for standing - normalized respiratory activity variation causes average heart activity. The presented approach allows data-driven and time-independent analysis of elite athletes as a particular population, without considering prior knowledge. However, the results seem to be consistent with the medical background. Causality inference is an interesting mathematical approach to the analysis of biological responses, which are complex. One can use it to profile athletes and plan appropriate training. In the next step, we plan to expand the study using time-related causality analyses.
Collapse
Affiliation(s)
- Marcel Młyńczak
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland
| | - Hubert Krysztofiak
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Valenza G, Wendt H, Kiyono K, Hayano J, Watanabe E, Yamamoto Y, Abry P, Barbieri R. Mortality Prediction in Severe Congestive Heart Failure Patients with Multifractal Point-Process Modeling of Heartbeat Dynamics. IEEE Trans Biomed Eng 2018; 65:2345-2354. [PMID: 29993522 DOI: 10.1109/tbme.2018.2797158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multifractal analysis of human heartbeat dynamics has been demonstrated to provide promising markers of Congestive Heart Failure (CHF). Yet, it crucially builds on the interpolation of RR intervals series, which has been generically performed with limited links to CHF pathophysiology. We devise a novel methodology estimating multifractal autonomic dynamics from heartbeat-derived series defined in the continuous time. We hypothesize that markers estimated from our novel framework are also effective for mortality prediction in severe CHF. We merge multifractal analysis within a methodological framework based on inhomogeneous point process models of heartbeat dynamics. Specifically, wavelet coefficients and wavelet leaders are computed over measures extracted from instantaneous statistics of probability density functions characterizing and predicting the time until the next heartbeat event occurs. The proposed approach is tested on data from 94 CHF patients, aiming at predicting survivor and non-survivor individuals as determined after a 4 years follow up. Instantaneous markers of vagal and sympatho-vagal dynamics display power-law scaling for a large range of scales, from s to s. Using standard SVM algorithms, the proposed inhomogeneous point-process representation based multifractal analysis achieved the best CHF mortality prediction accuracy of 79.11 % (sensitivity 90.48%, specificity 67.74%). Our results suggest that heartbeat scaling and multifractal properties in CHF patients are not generated at the sinus-node level, but rather by the intrinsic action of vagal short-term control and of sympatho-vagal fluctuations associated with circadian cardiovascular control, especially within the VLF band. These markers might provide critical information in devising a clinical tool for individualized prediction of survivor and non-survivor CHF patients.
Collapse
|