1
|
Zhou H, Wang Z, Dong Y, Alhaskawi A, Tu T, Hasan Abdullah Ezzi S, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Li P, Wu B, Chen Y, Lu H. New advances in treatment of skin malignant tumors with nanosecond pulsed electric field: A literature review. Bioelectrochemistry 2023; 150:108366. [PMID: 36641842 DOI: 10.1016/j.bioelechem.2023.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Nanosecond pulsed electric field, with its unique bioelectric effect, has shown broad application potential in the field of tumor therapy, especially in malignant tumors and skin tumors. MAIN BODY In this paper, we discuss the therapeutic effects and mechanisms of nanosecond pulsed electric field on three common skin cancers, namely, malignant melanoma, squamous cell carcinoma and basal cell carcinoma, as well as its application to other benign skin diseases and future development and improvement directions. CONCLUSION In general, nanosecond pulsed electric field mainly exerts its ablative effect on tumors through subcellular membrane electroporation effect. It is cell type-specific, has less thermal damage, and can have synergistic effect with chemotherapy drugs, making it a very promising new method for tumor treatment.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China
| | - Zewei Wang
- Zhejiang University School of Medicine, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, PR China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China
| | - Tian Tu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China
| | | | - Vishnu Goutham Kota
- Zhejiang University School of Medicine, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, PR China
| | | | - Pengfei Li
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China
| | - Bin Wu
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Ruidi Biotech Ltd. #2959 Yuhangtang Road, Hangzhou, Zhejiang Province 310000, PR China
| | - Yonggang Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Ruidi Biotech Ltd. #2959 Yuhangtang Road, Hangzhou, Zhejiang Province 310000, PR China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, PR China.
| |
Collapse
|
2
|
Liu Z, Zou Y, Sun Y, Chen X, Chen X, Ren Z. Effects of Nanosecond Pulsed Electric Fields in Cell Vitality, Apoptosis, and Proliferation of TPC-1 Cells. Anal Cell Pathol (Amst) 2021; 2021:9913716. [PMID: 34692376 PMCID: PMC8528613 DOI: 10.1155/2021/9913716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To evaluate the effects of nanosecond pulsed electric fields (nsPEFs) with different pulse durations in cell vitality, apoptosis, and proliferation of TPC-1 cells, optimize pulse parameters and expand the application range of nsPEFs. METHODS The pulse duration of 0, 300 ns, 500 ns, and 900 ns is generated with nsPEF generator. CCK-8 was used to investigate the effect of nsPEFs on the viability of TPC-1 cells. Flow cytometry was used to evaluate the apoptosis of TPC-1 after pulse treatment. The effect of nsPEFs on the proliferation ability of TPC-1 cells was detected by 5-ethy-nyl-2'-deoxyuridine. The morphological changes of TPC-1 cells after pulse treatment were observed by transmission electron microscopy. RESULTS NsPEFs with 900 ns pulse duration can significantly affect the viability of TPC-1 cells and inhibit the proliferation ability of TPC-1 cells. In addition, nsPEFs can also induce apoptosis of TPC-1 cells. CONCLUSION NsPEFs with longer pulse duration can significantly affect the biological behavior of TPC-1 cells, such as cell viability and proliferation ability, and can also induce cell apoptosis, thereby inhibiting cell growth.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- School of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yawen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaolong Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xinhua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou 310003, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
3
|
Mi Y, Dai L, Xu N, Zheng W, Ma C, Chen W, Zhang Q. Viability inhibition of A375 melanoma cells in vitroby a high-frequency nanosecond-pulsed magnetic field combined with targeted iron oxide nanoparticles via membrane magnetoporation. NANOTECHNOLOGY 2021; 32:385101. [PMID: 34144549 DOI: 10.1088/1361-6528/ac0caf] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
Poor efficacy and low electrical safety are issues in the treatment of tumours with pulsed magnetic fields (PMFs). Based on the cumulative effect of high-frequency pulses and the enhanced perforation effect of targeted nanoparticles, this article proposes for the first time a new method that combines high-frequency nanosecond-pulsed magnetic fields (nsPMFs) with folic acid-superparamagnetic iron oxide nanoparticles (SPIONs-FA) to kill tumour cells. After determining the safe concentration of the targeted iron oxide nanoparticles, CCK-8 reagent was used to detect the changes in cell viability after utilising the combined method. After that, PI macromolecular dyes were used to stain the cells. Then, the state of the cell membrane was observed by scanning electron microscopy, and other methods were applied to study the cell membrane permeability changes after the combined treatment of the cells. It was finally confirmed that the high-frequency PMF can significantly reduce cell viability through the cumulative effect. In addition, the targeted iron oxide nanoparticles can reduce the magnetic field amplitude and the number of pulses required for the high-frequency PMF to kill tumour cellsin vitrothrough magnetoporation. The objective of this research is to improve the electrical safety of the PMF with the use of nsPMFs for the safe, efficient and low-intensity treatment of tumours.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lujian Dai
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ning Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Zheng
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chi Ma
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wenjuan Chen
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| | - Qin Zhang
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| |
Collapse
|
4
|
Gu Y, Zhang L, Yang H, Zhuang J, Sun Z, Guo J, Guan M. Nanosecond pulsed electric fields impair viability and mucin expression in mucinous colorectal carcinoma cell. Bioelectrochemistry 2021; 141:107844. [PMID: 34052542 DOI: 10.1016/j.bioelechem.2021.107844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Nanosecond pulsed electric fields (nsPEFs) are a non-thermal technology that can induce a myriad of biological responses and changes in cellular physiology. nsPEFs have gained significant attention as a novel cancer therapy. However, studies investigating the application of nsPEF in mucinous carcinomas are scarce. In this study, we explored several biological responses in two mucinous colorectal adenocarcinoma cell lines, LS 174T and HT-29, to nsPEF treatment. We determined the overall cell survival and viability rates following nsPEF treatment using CCK-8 and colony formation assays. We measured the intracellular effects of nsPEF treatment by analyzing cell cycle distribution, cell apoptosis and mitochondrial potential. We also analyzed mucin production at both mRNA and protein levels. Our results showed that nsPEF treatment significantly reduced mucinous cell viability in a dose-dependent manner. nsPEF treatment increased cell cycles arrest at G0/G1 while the proportion of G2/M cells gradually decreased. Cell apoptosis increased following nsPEF treatment with a clear loss in mitochondrial membrane potential. Furthermore, the protein expression of functional mucin family members decreased after nsPEF treatment. In conclusion, nsPEF treatment reduced MCRC cell viability, cell proliferation, and mucin protein production while promoted apoptosis. Our work is a pilot study that projects some insights into the potential clinical applications of nsPEFs in treating mucinous colorectal carcinoma.
Collapse
Affiliation(s)
- Yiran Gu
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China; School of Life Science, Shanghai University, Shanghai 200444, China
| | - Long Zhang
- State Key Laboratory of Solid-State Lighting Research Center of Light for Health, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Hua Yang
- Department of General Surgery, Zhongshan Hospital (South Branch), Fudan University, Shanghai 200083, China
| | - Jie Zhuang
- State Key Laboratory of Solid-State Lighting Research Center of Light for Health, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinsong Guo
- State Key Laboratory of Solid-State Lighting Research Center of Light for Health, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Miao Guan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
5
|
Mi Y, Xu J, Liu Q, Wu X, Zhang Q, Tang J. Single-cell electroporation with high-frequency nanosecond pulse bursts: Simulation considering the irreversible electroporation effect and experimental validation. Bioelectrochemistry 2021; 140:107822. [PMID: 33915340 DOI: 10.1016/j.bioelechem.2021.107822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
To study the electroporation characteristics of cells under high-frequency nanosecond pulse bursts (HFnsPBs), the original electroporation mathematical model was improved. By setting a threshold value for irreversible electroporation (IRE) and considering the effect of an electric field on the surface tension of a cell membrane, a mathematical model of electroporation considering the effect of IRE is proposed for the first time. A typical two-dimensional cell system was discretized into nodes using MATLAB, and a mesh transport network method (MTNM) model was established for simulation. The dynamic processes of single-cell electroporation and molecular transport under the application of 50 unipolar HFnsPBs with field intensities of 9 kV cm-1 and different frequencies (10 kHz, 100 kHz and 500 kHz) to the target system was simulated with a 300 s simulation time. The IRE characteristics and molecular transport were evaluated. In addition, a PI fluorescent dye assay was designed to verify the correctness of the model by providing time-domain and spatial results that were compared with the simulation results. The simulation achieved IRE and demonstrated the cumulative effects of multipulse bursts and intraburst frequency on irreversible pores. The model can also reflect the cumulative effect of multipulse bursts on reversible pores by introducing an assumption of stable reversible pores. The experimental results agreed qualitatively with the simulation results. A relative calibration of the fluorescence data gave time-domain molecular transport results that were quantitatively similar to the simulation results. This article reveals the cell electroporation characteristics under HFnsPBs from a mechanism perspective and has important guidance for fields involving the IRE of cells.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
| | - Jin Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Quan Liu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xiao Wu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Zhang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| | - Junying Tang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| |
Collapse
|
6
|
Novickij V, Malyško V, Želvys A, Balevičiūtė A, Zinkevičienė A, Novickij J, Girkontaitė I. Electrochemotherapy Using Doxorubicin and Nanosecond Electric Field Pulses: A Pilot in Vivo Study. Molecules 2020; 25:E4601. [PMID: 33050300 PMCID: PMC7587179 DOI: 10.3390/molecules25204601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Pulsed electric field (PEF) is frequently used for intertumoral drug delivery resulting in a well-known anticancer treatment-electrochemotherapy. However, electrochemotherapy is associated with microsecond range of electrical pulses, while nanosecond range electrochemotherapy is almost non-existent. In this work, we analyzed the feasibility of nanosecond range pulse bursts for successful doxorubicin-based electrochemotherapy in vivo. The conventional microsecond (1.4 kV/cm × 100 µs × 8) procedure was compared to the nanosecond (3.5 kV/cm × 800 ns × 250) non-thermal PEF-based treatment. As a model, Sp2/0 tumors were developed. Additionally, basic current and voltage measurements were performed to detect the characteristic conductivity-dependent patterns and to serve as an indicator of successful tumor permeabilization both in the nano and microsecond pulse range. It was shown that nano-electrochemotherapy can be the logical evolution of the currently established European Standard Operating Procedures for Electrochemotherapy (ESOPE) protocols, offering better energy control and equivalent treatment efficacy.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.); (J.N.)
| | - Veronika Malyško
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| | - Austėja Balevičiūtė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.); (J.N.)
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| |
Collapse
|
7
|
A High-Accuracy Mathematical Morphology and Multilayer Perceptron-Based Approach for Melanoma Detection. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10031098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
According to the World Health Organization (WHO), melanoma is the most severe type of skin cancer and is the leading cause of death from skin cancer worldwide. Certain features of melanoma include size, shape, color, or texture changes of a mole. In this work, a novel, robust and efficient method for the detection and classification of melanoma in simple and dermatological images is proposed. It is achieved by using HSV (Hue, Saturation, Value) color space along with mathematical morphology and a Gaussian filter to detect the region of interest and estimate four descriptors: symmetry, edge, color, and size. Although these descriptors have been used for several years, the way they are computed for this proposal is one of the things that enhances the results. Subsequently, a multilayer perceptron is employed to classify between malignant and benign melanoma. Three datasets of simple and dermatological images commonly used in the literature were employed to train and evaluate the performance of the proposed method. According to k-fold cross-validation, the method outperforms three state-of-art works, achieving an accuracy of 98.5% and 98.6%, a sensitivity of 96.68% and 98.05%, and a specificity of 98.15%, and 98.01%, in simple and dermatological images, respectively. The results have proven that its use as an assistive device for the detection of melanoma would improve reliability levels compared to conventional methods.
Collapse
|
8
|
Mi Y, Xu J, Tang X, Bian C, Liu H, Yang Q, Tang J. Scaling Relationship of In Vivo Muscle Contraction Strength of Rabbits Exposed to High-Frequency Nanosecond Pulse Bursts. Technol Cancer Res Treat 2018; 17:1533033818788078. [PMID: 30012058 PMCID: PMC6050805 DOI: 10.1177/1533033818788078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We studied the influence of various parameters of high-frequency nanosecond pulse bursts on the strength of rabbit muscle contractions. Ten unipolar high-frequency pulse bursts with various field intensities E (1 kV/cm, 4 kV/cm, and 8 kV/cm), intraburst frequencies f (10 kHz, 100 kHz, and 1 MHz), and intraburst pulse numbers N (1, 10, and 100) were applied using a pair of plate electrodes to the surface skin of the rabbits' biceps femoris, and the acceleration signal of muscle contraction near the electrode was measured using a 3-axis acceleration sensor. A time- and frequency-domain analysis of the acceleration signals showed that the peak value of the signal increases with the increasing strength of the pulse burst and that the frequency spectra of the signals measured under various pulse bursts have characteristic frequencies (at approximately 2 Hz, 32 Hz, 45 Hz, and 55 Hz). Furthermore, we processed the data through multivariate nonlinear regression analysis and variance analysis and determined that the peak value of the signal scales with the logarithm to the base 10 of EN x, where x is a value that scales with the logarithm to the base 10 of intraburst frequency (f). These results indicate that for high-frequency nanosecond pulse treatment of solid tumors in or near muscles, when the field strength is relatively high, the intraburst frequency and the intraburst pulse number require appropriate selection to limit the strength of muscle contraction as much as possible.
Collapse
Affiliation(s)
- Yan Mi
- 1 State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Jin Xu
- 1 State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Xuefeng Tang
- 1 State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Changhao Bian
- 1 State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Hongliang Liu
- 2 Electric Power Research Institute State Grid Beijing Electric Power Company, Beijing, China
| | - Qiyu Yang
- 3 First Affiliated Hospital, Chongqing Medical Science University, Chongqing, China
| | - Junying Tang
- 3 First Affiliated Hospital, Chongqing Medical Science University, Chongqing, China
| |
Collapse
|