1
|
Sugimoto K, Chung DY, Fischer P, Takizawa T, Qin T, Yaseen MA, Sakadžić S, Ayata C. Optogenetic Functional Activation Is Detrimental During Acute Ischemic Stroke in Mice. Stroke 2024; 55:2502-2509. [PMID: 39234742 PMCID: PMC11421960 DOI: 10.1161/strokeaha.124.048032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Functional activation of the focal ischemic brain has been reported to improve outcomes by augmenting collateral blood flow. However, functional activation also increases metabolic demand and might thereby worsen outcomes. Indeed, preclinical and clinical reports have been conflicting. Here, we tested the effect of functional activation during acute ischemic stroke using distal middle cerebral artery occlusion in anesthetized mice. METHODS Using transgenic mice expressing channelrhodopsin-2 in neurons, we delivered functional activation using physiological levels of transcranial optogenetic stimulation of the moderately ischemic cortex (ie, penumbra), identified using real-time full-field laser speckle perfusion imaging during a 1-hour distal microvascular clip of the middle cerebral artery. Neuronal activation was confirmed using evoked field potentials, and infarct volumes were measured in tissue slices 48 hours later. RESULTS Optogenetic stimulation of the penumbra was associated with more than 2-fold larger infarcts than stimulation of the contralateral homotopic region and the sham stimulation group (n=10, 7, and 9; 11.0±5.6 versus 5.1±4.3 versus 4.1±3.7 mm3; P=0.008, 1-way ANOVA). Identical stimulation in wild-type mice that do not express channelrhodopsin-2 did not have an effect. Optogenetic stimulation was associated with a small increase in penumbral perfusion that did not explain enlarged infarcts. CONCLUSIONS Our data suggest that increased neuronal activity during acute focal arterial occlusions can be detrimental, presumably due to increased metabolic demand, and may have implications for the clinical management of hyperacute stroke patients.
Collapse
Affiliation(s)
- Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurosurgery, Yamaguchi University School of Medicine, Japan
| | - David Y. Chung
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Paul Fischer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurology with Experimental Neurology Charité-Universitätsmedizin Berlin and Berlin Institute of Health at Charité – Universitätsmedizin Berlin,BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin Germany
| | - Tsubasa Takizawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Mohammad A. Yaseen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Bioengineering Department, Northeastern University, Boston, MA, USA
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|
2
|
Adhikari Y, Ma CG, Chai Z, Jin X. Preventing development of post-stroke hyperexcitability by optogenetic or pharmacological stimulation of cortical excitatory activity. Neurobiol Dis 2023; 184:106233. [PMID: 37468047 DOI: 10.1016/j.nbd.2023.106233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Stroke is the most common cause of acquired epilepsy, but treatment for preventing the development of post-stroke epilepsy is still unavailable. Since stroke results in neuronal damage and death as well as initial loss of activity in the affected brain region, homeostatic plasticity may be trigged and contribute to an increase in network hyperexcitability that underlies epileptogenesis. Correspondingly, enhancing brain activity may inhibit hyperexcitability from enhanced homeostatic plasticity and prevent post-stroke epileptogenesis. To test these hypotheses, we first used in vivo two-photon and mesoscopic imaging of activity of cortical pyramidal neurons in Thy1-GCaMP6 transgenic mice to determine longitudinal changes in excitatory activity after a photothrombotic ischemic stroke. At 3-days post-stroke, there was a significant loss of neuronal activity in the peri-injury area as indicated by reductions in the frequency of calcium spikes and percentage of active neurons, which recovered to baseline level at day 7, supporting a homeostatic activity regulation of the surviving neurons in the peri-injury area. We further used optogenetic stimulation to specifically stimulate activity of pyramidal neurons in the peri-injury area of Thy-1 channelrhodopsin transgenic mice from day 5 to day 15 after stroke. Using pentylenetetrazole test to evaluate seizure susceptibility, we showed that stroke mice are more susceptible to Racine stage V seizures (time latency 54.3 ± 12.9 min) compared to sham mice (107.1 ± 13.6 min), but optogenetic stimulation reversed the increase in seizure susceptibility (114.0 ± 9.2 min) in mice with stroke. Similarly, administration of D-cycloserine, a partial N-methyl-d-aspartate (NMDA) receptor agonist that can mildly enhance neuronal activity without causing post-stroke seizure, from day 5 to day 15 after a stroke significantly reversed the increase in seizure susceptibility. The treatment also resulted in an increased survival of glutamic acid decarboxylase 67 (GAD67) positive interneurons and a reduced activation of glial fibrillary acidic protein (GFAP) positive reactive astrocytes. Thus, this study supports the involvement of homeostatic activity regulation in the development of post-stroke hyperexcitability and potential application of activity enhancement as a novel strategy to prevent post-stroke late-onset seizure and epilepsy through regulating cortical homeostatic plasticity.
Collapse
Affiliation(s)
- Yadav Adhikari
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Cun-Gen Ma
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation/Neurobiology Research Center, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Zhi Chai
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation/Neurobiology Research Center, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiaoming Jin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Liu W, He X, Lin H, Yang M, Dai Y, Chen L, Li C, Liang S, Tao J, Chen L. Ischemic stroke rehabilitation through optogenetic modulation of parvalbumin neurons in the contralateral motor cortex. Exp Neurol 2023; 360:114289. [PMID: 36471512 DOI: 10.1016/j.expneurol.2022.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Based on the theory of interhemispheric inhibition and the bimodal balance-recovery model in stroke, we explored the effects of excitation/inhibition (E/I) of parvalbumin (PV) neurons in the contralateral primary motor cortex (cM1) connecting the ipsilateral M1 (iM1) via the corpus callosum (cM1-CC-iM1) of ischemic stroke rats by optogenetic stimulation. METHODS We tested this by injecting anterograde and retrograde virus in rats with middle cerebral artery occlusion (MCAO), and evaluated the neurological scores, motor behavior, volume of cerebral infarction and the E/I balance of the bilateral M1 two weeks after employing optogenetic treatment. RESULTS We found that concentrations of Glu and GABA decreased and increased, respectively, in the iM1 of MCAO rats, and that the former increased in the cM1, suggesting E/I imbalance in bilateral M1 after ischemic stroke. Interestingly, optogenetic stimulation improved M1 E/I imbalance, as illustrated by the increase of Glu in the iM1 and the decrease of GABA in both iM1 and cM1, which were accompanied by an improvement in neurological deficit and motor dysfunction. In addition, we observed a reduced infarct volume, an increase in the expression of the NMDAR and AMPAR, and a decrease in GAD67 in the iM1 after intervention. CONCLUSIONS Optogenetic modulation of PV neurons of the iM1-CC-cM1 improve E/I balance, leading to reduced neurological deficit and improved motor dysfunction following ischemic stroke in rats.
Collapse
Affiliation(s)
- Weilin Liu
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaojun He
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huawei Lin
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Minguang Yang
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yaling Dai
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lewen Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Chaohui Li
- General surgery, Anxi General Hospital of Traditional Chinese Medicine, Quanzhou, Fujian 362400, China
| | - Shengxiang Liang
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jing Tao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lidian Chen
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
4
|
Chen H, Shi Y, Bo B, Zhao D, Miao P, Tong S, Wang C. Real-Time Cerebral Vessel Segmentation in Laser Speckle Contrast Image Based on Unsupervised Domain Adaptation. Front Neurosci 2021; 15:755198. [PMID: 34916898 PMCID: PMC8669333 DOI: 10.3389/fnins.2021.755198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/02/2022] Open
Abstract
Laser speckle contrast imaging (LSCI) is a full-field, high spatiotemporal resolution and low-cost optical technique for measuring blood flow, which has been successfully used for neurovascular imaging. However, due to the low signal-noise ratio and the relatively small sizes, segmenting the cerebral vessels in LSCI has always been a technical challenge. Recently, deep learning has shown its advantages in vascular segmentation. Nonetheless, ground truth by manual labeling is usually required for training the network, which makes it difficult to implement in practice. In this manuscript, we proposed a deep learning-based method for real-time cerebral vessel segmentation of LSCI without ground truth labels, which could be further integrated into intraoperative blood vessel imaging system. Synthetic LSCI images were obtained with a synthesis network from LSCI images and public labeled dataset of Digital Retinal Images for Vessel Extraction, which were then used to train the segmentation network. Using matching strategies to reduce the size discrepancy between retinal images and laser speckle contrast images, we could further significantly improve image synthesis and segmentation performance. In the testing LSCI images of rodent cerebral vessels, the proposed method resulted in a dice similarity coefficient of over 75%.
Collapse
Affiliation(s)
- Heping Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yan Shi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Bo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Denghui Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Miao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chunliang Wang
- School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
5
|
Combining DC-GAN with ResNet for blood cell image classification. Med Biol Eng Comput 2020; 58:1251-1264. [PMID: 32221797 DOI: 10.1007/s11517-020-02163-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 03/12/2020] [Indexed: 11/27/2022]
Abstract
In medicine, white blood cells (WBCs) play an important role in the human immune system. The different types of WBC abnormalities are related to different diseases so that the total number and classification of WBCs are critical for clinical diagnosis and therapy. However, the traditional method of white blood cell classification is to segment the cells, extract features, and then classify them. Such method depends on the good segmentation, and the accuracy is not high. Moreover, the insufficient data or unbalanced samples can cause the low classification accuracy of model by using deep learning in medical diagnosis. To solve these problems, this paper proposes a new blood cell image classification framework which is based on a deep convolutional generative adversarial network (DC-GAN) and a residual neural network (ResNet). In particular, we introduce a new loss function which is improved the discriminative power of the deeply learned features. The experiments show that our model has a good performance on the classification of WBC images, and the accuracy reaches 91.7%. Graphical Abstract Overview of the proposed method, we use the deep convolution generative adversarial networks (DC-GAN) to generate new samples that are used as supplementary input to a ResNet, the transfer learning method is used to initialize the parameters of the network, the output of the DC-GAN and the parameters are applied the final classification network. In particular, we introduced a modified loss function for classification to increase inter-class variations and decrease intra-class differences.
Collapse
|
6
|
Optogenetic translocation of protons out of penumbral neurons is protective in a rodent model of focal cerebral ischemia. Brain Stimul 2020; 13:881-890. [PMID: 32289721 DOI: 10.1016/j.brs.2020.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intracellular acidosis in the ischemic penumbra can contribute to further cell death, effectively enlarging the infarct core. Restoring the acid-base balance may enhance tissue survivability after cerebral ischemia. OBJECTIVE This study investigated whether translocating protons out of penumbral neurons could mitigate tissue acidification and induce neuroprotection in a rodent model of acute cerebral ischemia. METHODS We modulated the penumbral neurons via a light-driven pump to translocate protons out (i.e., archaerhodopsin/ArchT group) or into (i.e., channelrhodopsin-2/ChR2 group) neurons after focal cerebral ischemia in rats. Intracellular pH values were imaged via neutral red (NR) fluorescence and cerebral blood flow (CBF) was monitored through laser speckle contrast imaging (LSCI). Global CBF responses to electrical stimulation of the hindlimbs were obtained 24 h and 48 h after ischemia to assess neurological function. Behavioral and histological outcomes were evaluated 48 h after ischemia. A control group without gene modification was included. RESULTS The reduction of relative pH (RpH), the amplitude of negative peak of hypoemic response (RNP) and the hemispheric lateralization index (LI) in ArchT group were significantly less than those of the ChR2 or control group. Moreover, RpH was strongly correlated with RNP (r = 0.60) and LI (r24h = 0.80, r48h = 0.59). In addition, behavioral and histological results supported a neuroprotective effect of countering neuronal acidosis in penumbra through optogenetic stimulation. CONCLUSION(S) These results indicate that countering intracellular acidosis by optogenetically translocating protons out of penumbral neurons during the acute ischemic stage could induce protection after ischemic brain injury.
Collapse
|