1
|
Faria RM, Rosa SDSRF, Nunes GAMDA, Santos KS, de Souza RP, Benavides ADI, Alves AKDO, da Silva AKA, Rosa MF, Cardoso AADA, Faria SDS, Berjano E, da Rocha AF, dos Santos Í, González-Suárez A. Particle swarm optimization solution for roll-off control in radiofrequency ablation of liver tumors: Optimal search for PID controller tuning. PLoS One 2024; 19:e0300445. [PMID: 38924000 PMCID: PMC11207125 DOI: 10.1371/journal.pone.0300445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/28/2024] [Indexed: 06/28/2024] Open
Abstract
The study investigates the efficacy of a bioinspired Particle Swarm Optimization (PSO) approach for PID controller tuning in Radiofrequency Ablation (RFA) for liver tumors. Ex-vivo experiments were conducted, yielding a 9th order continuous-time transfer function. PSO was applied to optimize PID parameters, achieving outstanding simulation results: 0.605% overshoot, 0.314 seconds rise time, and 2.87 seconds settling time for a unit step input. Statistical analysis of 19 simulations revealed PID gains: Kp (mean: 5.86, variance: 4.22, standard deviation: 2.05), Ki (mean: 9.89, variance: 0.048, standard deviation: 0.22), Kd (mean: 0.57, variance: 0.021, standard deviation: 0.14) and ANOVA analysis for the 19 experiments yielded a p-value ≪ 0.05. The bioinspired PSO-based PID controller demonstrated remarkable potential in mitigating roll-off effects during RFA, reducing the risk of incomplete tumor ablation. These findings have significant implications for improving clinical outcomes in hepatocellular carcinoma management, including reduced recurrence rates and minimized collateral damage. The PSO-based PID tuning strategy offers a practical solution to enhance RFA effectiveness, contributing to the advancement of radiofrequency ablation techniques.
Collapse
Affiliation(s)
- Rafael Mendes Faria
- Department of Mechanical Engineering, University of Brasilia, Brasilia, Distrito Federal, Brazil
- Department of Electrical Engineering, Federal Institute of Education, Science and Technology of Triângulo Mineiro, Paracatu, Minas Gerais, Brazil
| | - Suélia de Siqueira Rodrigues Fleury Rosa
- Department of Mechanical Engineering, University of Brasilia, Brasilia, Distrito Federal, Brazil
- Department of Biomedical Engineering, Faculty of Gama, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | | | - Klériston Silva Santos
- Department of Mechanical Engineering, University of Brasilia, Brasilia, Distrito Federal, Brazil
- Department of Electrical Engineering, Federal Institute of Education, Science and Technology of Triângulo Mineiro, Paracatu, Minas Gerais, Brazil
| | - Rafael Pissinati de Souza
- Department of Mechanical Engineering, University of Brasilia, Brasilia, Distrito Federal, Brazil
- Department of Electrical Engineering, Federal Institute of Education, Science and Technology of Rondônia, Porto Velho, Rondônia, Brazil
| | | | | | | | - Mario Fabrício Rosa
- Department of Biomedical Engineering, Faculty of Gama, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | | | - Sylvia de Sousa Faria
- Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Enrique Berjano
- Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Adson Ferreira da Rocha
- Department of Electrical Engineering, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | - Ícaro dos Santos
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
| | - Ana González-Suárez
- Translational Medical Device Lab, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Kho ASK, Ooi EH, Foo JJ, Ooi ET. Saline-Infused Radiofrequency Ablation: A Review on the Key Factors for a Safe and Reliable Tumour Treatment. IEEE Rev Biomed Eng 2024; 17:310-321. [PMID: 35653443 DOI: 10.1109/rbme.2022.3179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Radiofrequency ablation (RFA) combined with saline infusion into tissue is a promising technique to ablate larger tumours. Nevertheless, the application of saline-infused RFA remains at clinical trials due to the contradictory findings as a result of the inconsistencies in experimental procedures. These inconsistencies not only magnify the number of factors to consider during the treatment, but also obscure the understanding of the role of saline in enlarging the coagulation zone. Consequently, this can result in major complications, which includes unwanted thermal damages to adjacent tissues and also incomplete ablation of the tumour. This review aims to identify the key factors of saline responsible for enlarging the coagulation zone during saline-infused RFA, and provide a proper understanding on their effects that is supported with findings from computational studies to ensure a safe and reliable cancer treatment.
Collapse
|
3
|
Parametric evaluation of impedance curve in radiofrequency ablation: A quantitative description of the asymmetry and dynamic variation of impedance in bovine ex vivo model. PLoS One 2021; 16:e0245145. [PMID: 33449951 PMCID: PMC7810295 DOI: 10.1371/journal.pone.0245145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/22/2020] [Indexed: 01/03/2023] Open
Abstract
Radiofrequency ablation (RFA) is a treatment for liver tumors with advantages over the traditional treatment of surgical resection. This procedure has the shortest recovery time in early stage tumors. The objective of this study is to parameterize the impedance curve of the RFA procedure in an ex vivo model by defining seven parameters (t1/2, tminimum, tend, Zinitial, Z1/2, Zminimum and Zend). Based on these parameters, three performance indices are defined: one to identify the magnitude of impedance curve asymmetry (δ), one Drop ratio (DR) describing the percentage of impedance decrease until the minimum impedance point is reached, and Ascent Ratio (AR) describing the magnitude of increase in impedance from the minimum impedance point to its maximum point. Fifty ablations were performed in a bovine ex vivo model to measure and evaluate the proposed parameters and performance index. The results show that the groups had an average δ of 29.02%, DR of 22.41%, and AR of 545.33% for RFA without the use of saline or deionized solutions. The saline solution and deionized water-cooled groups indicated the correlation of performance indices δ, DR, and AR with the obtained final ablation volume. Therefore, by controlling these parameters and indices, lower recurrence is achieved.
Collapse
|
4
|
Castro-López DL, Berjano E, Romero-Mendez R. Radiofrequency ablation combined with conductive fluid-based dopants (saline normal and colloidal gold): computer modeling and ex vivo experiments. Biomed Eng Online 2021; 20:4. [PMID: 33407532 PMCID: PMC7788784 DOI: 10.1186/s12938-020-00842-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/15/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The volume of the coagulation zones created during radiofrequency ablation (RFA) is limited by the appearance of roll-off. Doping the tissue with conductive fluids, e.g., gold nanoparticles (AuNPs) could enlarge these zones by delaying roll-off. Our goal was to characterize the electrical conductivity of a substrate doped with AuNPs in a computer modeling study and ex vivo experiments to investigate their effect on coagulation zone volumes. METHODS The electrical conductivity of substrates doped with normal saline or AuNPs was assessed experimentally on agar phantoms. The computer models, built and solved on COMSOL Multiphysics, consisted of a cylindrical domain mimicking liver tissue and a spherical domain mimicking a doped zone with 2, 3 and 4 cm diameters. Ex vivo experiments were conducted on bovine liver fragments under three different conditions: non-doped tissue (ND Group), 2 mL of 0.9% NaCl (NaCl Group), and 2 mL of AuNPs 0.1 wt% (AuNPs Group). RESULTS The theoretical analysis showed that adding normal saline or colloidal gold in concentrations lower than 10% only modifies the electrical conductivity of the doped substrate with practically no change in the thermal characteristics. The computer results showed a relationship between doped zone size and electrode length regarding the created coagulation zone. There was good agreement between the ex vivo and computational results in terms of transverse diameter of the coagulation zone. CONCLUSIONS Both the computer and ex vivo experiments showed that doping with AuNPs can enlarge the coagulation zone, especially the transverse diameter and hence enhance sphericity.
Collapse
Affiliation(s)
- Dora Luz Castro-López
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78290, México
| | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, 46018, Valencia, Spain
| | - Ricardo Romero-Mendez
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78290, México.
| |
Collapse
|
5
|
Kho ASK, Foo JJ, Ooi ET, Ooi EH. Shape-shifting thermal coagulation zone during saline-infused radiofrequency ablation: A computational study on the effects of different infusion location. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105289. [PMID: 31891903 DOI: 10.1016/j.cmpb.2019.105289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE The majority of the studies on radiofrequency ablation (RFA) have focused on enlarging the size of the coagulation zone. An aspect that is crucial but often overlooked is the shape of the coagulation zone. The shape is crucial because the majority of tumours are irregularly-shaped. In this paper, the ability to manipulate the shape of the coagulation zone following saline-infused RFA by altering the location of saline infusion is explored. METHODS A 3D model of the liver tissue was developed. Saline infusion was described using the dual porosity model, while RFA was described using the electrostatic and bioheat transfer equations. Three infusion locations were investigated, namely at the proximal end, the middle and the distal end of the electrode. Investigations were carried out numerically using the finite element method. RESULTS Results indicated that greater thermal coagulation was found in the region of tissue occupied by the saline bolus. Infusion at the middle of the electrode led to the largest coagulation volume followed by infusion at the proximal and distal ends. It was also found that the ability to delay roll-off, as commonly associated with saline-infused RFA, was true only for the case when infusion is carried out at the middle. When infused at the proximal and distal ends, the occurrence of roll-off was advanced. This may be due to the rapid and more intense heating experienced by the tissue when infusion is carried out at the electrode ends where Joule heating is dominant. CONCLUSION Altering the location of saline infusion can influence the shape of the coagulation zone following saline-infused RFA. The ability to 'shift' the coagulation zone to a desired location opens up great opportunities for the development of more precise saline-infused RFA treatment that targets specific regions within the tissue.
Collapse
Affiliation(s)
- Antony S K Kho
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Ji J Foo
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC 3350, Australia
| | - Ean H Ooi
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
6
|
Fang Z, Moser MAJ, Zhang EM, Zhang W, Zhang B. A Novel Method to Increase Tumor Ablation Zones With RFA by Injecting the Cationic Polymer Solution to Tissues: In Vivo and Computational Studies. IEEE Trans Biomed Eng 2019; 67:1787-1796. [PMID: 31634120 DOI: 10.1109/tbme.2019.2947292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study aims to examine, for the first time, the introduction of cationic polymer solutions to improve radiofrequency ablation (RFA) in terms of a potentially enlarged ablation zone. METHODS By using in vivo and computational RFA studies, two cationic polymers, Chitooligosaccharides (COS) and carboxymethyl chitosan (CMC), diluted in deionized water, were injected into tissues separately surrounding the RF bipolar electrode prior to power application. A total of 9 rabbits were used to 1) measure the increase in electrical conductivity of tissues injected with the cationic polymer solutions, and 2) explore the enhancement of the ablation performance in RFA trials. A computer model of RFA comprising a model of the solution diffusion with an RF thermal ablation model was also built, validated by the in vivo experiment, to quantitatively study the effect of cationic polymer solutions on ablation performances. RESULTS Compared to the control group, the electrical conductivity of rabbit liver tissues was increased by 42.20% (0.282 ± 0.006 vs. 0.401 ± 0.048 S/m, P = 0.001) and 43.97% (0.282 ± 0.006 vs. 0.406 ± 0.042 S/m, P = 0.001) by injecting the COS and CMC solution at the concentration of 100 mg/mL into the tissues, denoted COSDW100 and CMCDW100, respectively. Consequently, the in vivo experiments show that the ablation zone was enlarged by 95% (47.6 ± 6.3 vs. 92.6 ± 11.5 mm2, P < 0.001) and 87% (47.6± 6.3 vs. 88.8 ± 9.6 mm2, P < 0.001) by COSDW100 and CMCDW100, respectively. The computer simulation shows that the ablation zone was enlarged by 71% (51.9 vs. 88.7 mm2) and 63% (51.9 vs. 84.7 mm2) by COSDW100 and CMCDW100, respectively. CONCLUSION The injection of the cationic solution can greatly improve the performance of RFA treatment in terms of enlarging the ablation zone, which is due to the increase in the electrical conductivity of liver tissues surrounding the RF electrode. SIGNIFICANCE This study contributes to the improvement of RFA in the treatment of large tumors.
Collapse
|