1
|
Yin L, Li W, Du Y, Wang K, Liu Z, Hui H, Tian J. Recent developments of the reconstruction in magnetic particle imaging. Vis Comput Ind Biomed Art 2022; 5:24. [PMID: 36180612 PMCID: PMC9525566 DOI: 10.1186/s42492-022-00120-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/07/2022] Open
Abstract
Magnetic particle imaging (MPI) is an emerging molecular imaging technique with high sensitivity and temporal-spatial resolution. Image reconstruction is an important research topic in MPI, which converts an induced voltage signal into the image of superparamagnetic iron oxide particles concentration distribution. MPI reconstruction primarily involves system matrix- and x-space-based methods. In this review, we provide a detailed overview of the research status and future research trends of these two methods. In addition, we review the application of deep learning methods in MPI reconstruction and the current open sources of MPI. Finally, research opinions on MPI reconstruction are presented. We hope this review promotes the use of MPI in clinical applications.
Collapse
Affiliation(s)
- Lin Yin
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangdong, 510632 China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100083 China
| |
Collapse
|
2
|
Zhang P, Liu J, Yin L, An Y, Zhang S, Tong W, Hui H, Tian J. Adaptive permissible region based random Kaczmarz reconstruction method for localization of carotid atherosclerotic plaques in fluorescence molecular tomography. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. In this study, we propose the adaptive permissible region based random Kaczmarz method as an improved reconstruction method to recover small carotid atherosclerotic plaque targets in rodents with high resolution in fluorescence molecular tomography (FMT). Approach. We introduce the random Kaczmarz method as an advanced minimization method to solve the FMT inverse problem. To satisfy the special condition of this method, we proposed an adaptive permissible region strategy based on traditional permissible region methods to flexibly compress the dimension of the solution space. Main results. Monte Carlo simulations, phantom experiments, and in vivo experiments demonstrate that the proposed method can recover the small carotid atherosclerotic plaque targets with high resolution and accuracy, and can achieve lower root mean squared error and distance error (DE) than other traditional methods. For targets with 1.5 mm diameter and 0.5 mm separation, the DE indicators can be improved by up to 40%. Moreover, the proposed method can be utilized for in vivo locating atherosclerotic plaques with high accuracy and robustness. Significance. We applied the random Kaczmarz method to solve the inverse problem in FMT and improve the reconstruction result via this advanced minimization method. We verified that the FMT technology has a great potential to locate and quantify atherosclerotic plaques with higher accuracy, and can be expanded to more preclinical research.
Collapse
|
3
|
Zhao X, Jin J, Xu R, Li S, Sun H, Wang X, Cichocki A. A Regional Smoothing Block Sparse Bayesian Learning Method With Temporal Correlation for Channel Selection in P300 Speller. Front Hum Neurosci 2022; 16:875851. [PMID: 35754766 PMCID: PMC9231363 DOI: 10.3389/fnhum.2022.875851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The P300-based brain-computer interfaces (BCIs) enable participants to communicate by decoding the electroencephalography (EEG) signal. Different regions of the brain correspond to various mental activities. Therefore, removing weak task-relevant and noisy channels through channel selection is necessary when decoding a specific type of activity from EEG. It can improve the recognition accuracy and reduce the training time of the subsequent models. This study proposes a novel block sparse Bayesian-based channel selection method for the P300 speller. In this method, we introduce block sparse Bayesian learning (BSBL) into the channel selection of P300 BCI for the first time and propose a regional smoothing BSBL (RSBSBL) by combining the spatial distribution properties of EEG. The RSBSBL can determine the number of channels adaptively. To ensure practicality, we design an automatic selection iteration strategy model to reduce the time cost caused by the inverse operation of the large-size matrix. We verified the proposed method on two public P300 datasets and on our collected datasets. The experimental results show that the proposed method can remove the inferior channels and work with the classifier to obtain high-classification accuracy. Hence, RSBSBL has tremendous potential for channel selection in P300 tasks.
Collapse
Affiliation(s)
- Xueqing Zhao
- The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Jing Jin
- The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
- Shenzhen Research Institute of East China University of Technology, Shenzhen, China
| | - Ren Xu
- g.tec medical engineering GmbH, Graz, Austria
| | - Shurui Li
- The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Hao Sun
- The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Xingyu Wang
- The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Andrzej Cichocki
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Systems Research Institute of Polish Academy of Science, Warsaw, Poland
- Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
4
|
Bentley A, Xu X, Deng Z, Rowe JE, Kang-Hsin Wang K, Dehghani H. Quantitative molecular bioluminescence tomography. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220026GRR. [PMID: 35726130 PMCID: PMC9207518 DOI: 10.1117/1.jbo.27.6.066004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Bioluminescence imaging and tomography (BLT) are used to study biologically relevant activity, typically within a mouse model. A major limitation is that the underlying optical properties of the volume are unknown, leading to the use of a "best" estimate approach often compromising quantitative accuracy. AIM An optimization algorithm is presented that localizes the spatial distribution of bioluminescence by simultaneously recovering the optical properties and location of bioluminescence source from the same set of surface measurements. APPROACH Measured data, using implanted self-illuminating sources as well as an orthotopic glioblastoma mouse model, are employed to recover three-dimensional spatial distribution of the bioluminescence source using a multi-parameter optimization algorithm. RESULTS The proposed algorithm is able to recover the size and location of the bioluminescence source while accounting for tissue attenuation. Localization accuracies of <1 mm are obtained in all cases, which is similar if not better than current "gold standard" methods that predict optical properties using a different imaging modality. CONCLUSIONS Application of this approach, using in-vivo experimental data has shown that quantitative BLT is possible without the need for any prior knowledge about optical parameters, paving the way toward quantitative molecular imaging of exogenous and indigenous biological tumor functionality.
Collapse
Affiliation(s)
- Alexander Bentley
- University of Birmingham, School of Computer Science, College of Engineering and Physical Sciences, Birmingham, United Kingdom
- University of Birmingham, College of Engineering and Physical Sciences, Physical Sciences for Health Doctoral Training Centre, Birmingham, United Kingdom
| | - Xiangkun Xu
- University of Texas Southwestern Medical Center, Biomedical Imaging and Radiation Technology Laboratory, Department of Radiation Oncology, Dallas, Texas, United States
- Johns Hopkins University, Department of Radiation Oncology and Molecular Radiation Sciences, Baltimore, Maryland, United States
| | - Zijian Deng
- University of Texas Southwestern Medical Center, Biomedical Imaging and Radiation Technology Laboratory, Department of Radiation Oncology, Dallas, Texas, United States
- Johns Hopkins University, Department of Radiation Oncology and Molecular Radiation Sciences, Baltimore, Maryland, United States
| | - Jonathan E. Rowe
- University of Birmingham, School of Computer Science, College of Engineering and Physical Sciences, Birmingham, United Kingdom
| | - Ken Kang-Hsin Wang
- University of Texas Southwestern Medical Center, Biomedical Imaging and Radiation Technology Laboratory, Department of Radiation Oncology, Dallas, Texas, United States
- Johns Hopkins University, Department of Radiation Oncology and Molecular Radiation Sciences, Baltimore, Maryland, United States
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, College of Engineering and Physical Sciences, Birmingham, United Kingdom
- University of Birmingham, College of Engineering and Physical Sciences, Physical Sciences for Health Doctoral Training Centre, Birmingham, United Kingdom
| |
Collapse
|
5
|
Wang Y, Zhang H, Guo H, Wang B, Liu Y, He X, Yu J, Yi H, He X. Accurate and fast reconstruction for bioluminescence tomography based on adaptive Newton hard thresholding pursuit algorithm. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:829-840. [PMID: 36215444 DOI: 10.1364/josaa.449917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/15/2022] [Indexed: 06/16/2023]
Abstract
As a promising noninvasive medical imaging technique, bioluminescence tomography (BLT) dynamically offers three-dimensional visualization of tumor distribution in living animals. However, due to the high ill-posedness caused by the strong scattering property of biological tissues and the limited boundary measurements with noise, BLT reconstruction still cannot meet actual preliminary clinical application requirements. In our research, to recover 3D tumor distribution quickly and precisely, an adaptive Newton hard thresholding pursuit (ANHTP) algorithm is proposed to improve the performance of BLT. The ANHTP algorithm fully combines the advantages of sparsity constrained optimization and convex optimization to guarantee global convergence. More precisely, an adaptive sparsity adjustment strategy was developed to obtain the support set of the inverse system matrix. Based on the strong Wolfe line search criterion, a modified damped Newton algorithm was constructed to obtain optimal source distribution information. A series of numerical simulations and phantom and in vivo experiments show that ANHTP has high reconstruction accuracy, fast reconstruction speed, and good robustness. Our proposed algorithm can further increase the practicality of BLT in biomedical applications.
Collapse
|
6
|
Liu Y, Chu M, Guo H, Hu X, Yu J, He X, Yi H, He X. Multispectral Differential Reconstruction Strategy for Bioluminescence Tomography. Front Oncol 2022; 12:768137. [PMID: 35251958 PMCID: PMC8895370 DOI: 10.3389/fonc.2022.768137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Bioluminescence tomography (BLT) is a promising in vivo molecular imaging tool that allows non-invasive monitoring of physiological and pathological processes at the cellular and molecular levels. However, the accuracy of the BLT reconstruction is significantly affected by the forward modeling errors in the simplified photon propagation model, the measurement noise in data acquisition, and the inherent ill-posedness of the inverse problem. In this paper, we present a new multispectral differential strategy (MDS) on the basis of analyzing the errors generated from the simplification from radiative transfer equation (RTE) to diffusion approximation and data acquisition of the imaging system. Through rigorous theoretical analysis, we learn that spectral differential not only can eliminate the errors caused by the approximation of RTE and imaging system measurement noise but also can further increase the constraint condition and decrease the condition number of system matrix for reconstruction compared with traditional multispectral (TM) reconstruction strategy. In forward simulations, energy differences and cosine similarity of the measured surface light energy calculated by Monte Carlo (MC) and diffusion equation (DE) showed that MDS can reduce the systematic errors in the process of light transmission. In addition, in inverse simulations and in vivo experiments, the results demonstrated that MDS was able to alleviate the ill-posedness of the inverse problem of BLT. Thus, the MDS method had superior location accuracy, morphology recovery capability, and image contrast capability in the source reconstruction as compared with the TM method and spectral derivative (SD) method. In vivo experiments verified the practicability and effectiveness of the proposed method.
Collapse
Affiliation(s)
- Yanqiu Liu
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Mengxiang Chu
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- Network and Data Center, Northwest University, Xi’an, China
| | - Hongbo Guo
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
- *Correspondence: Hongbo Guo, ; Xiaowei He,
| | - Xiangong Hu
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- Network and Data Center, Northwest University, Xi’an, China
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China
| | - Xuelei He
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Huangjian Yi
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Xiaowei He
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
- Network and Data Center, Northwest University, Xi’an, China
- *Correspondence: Hongbo Guo, ; Xiaowei He,
| |
Collapse
|
7
|
Yin L, Cao Z, Wang K, Tian J, Yang X, Zhang J. A review of the application of machine learning in molecular imaging. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:825. [PMID: 34268438 PMCID: PMC8246214 DOI: 10.21037/atm-20-5877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Molecular imaging (MI) is a science that uses imaging methods to reflect the changes of molecular level in living state and conduct qualitative and quantitative studies on its biological behaviors in imaging. Optical molecular imaging (OMI) and nuclear medical imaging are two key research fields of MI. OMI technology refers to the optical information generated by the imaging target (such as tumors) due to drug intervention and other reasons. By collecting the optical information, researchers can track the motion trajectory of the imaging target at the molecular level. Owing to its high specificity and sensitivity, OMI has been widely used in preclinical research and clinical surgery. Nuclear medical imaging mainly detects ionizing radiation emitted by radioactive substances. It can provide molecular information for early diagnosis, effective treatment and basic research of diseases, which has become one of the frontiers and hot topics in the field of medicine in the world today. Both OMI and nuclear medical imaging technology require a lot of data processing and analysis. In recent years, artificial intelligence technology, especially neural network-based machine learning (ML) technology, has been widely used in MI because of its powerful data processing capability. It provides a feasible strategy to deal with large and complex data for the requirement of MI. In this review, we will focus on the applications of ML methods in OMI and nuclear medical imaging.
Collapse
Affiliation(s)
- Lin Yin
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Cao
- Peking University First Hospital, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | |
Collapse
|
8
|
Yin L, Wang K, Tong T, Wang Q, An Y, Yang X, Tian J. Adaptive Grouping Block Sparse Bayesian Learning Method for Accurate and Robust Reconstruction in Bioluminescence Tomography. IEEE Trans Biomed Eng 2021; 68:3388-3398. [PMID: 33830917 DOI: 10.1109/tbme.2021.3071823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Bioluminescence tomography (BLT) is a promising modality that is designed to provide non-invasive quantitative three-dimensional information regarding the tumor distribution in living animals. However, BLT suffers from inferior reconstructions due to its ill-posedness. This study aims to improve the reconstruction performance of BLT. METHODS We propose an adaptive grouping block sparse Bayesian learning (AGBSBL) method, which incorporates the sparsity prior, correlation of neighboring mesh nodes, and anatomical structure prior to balance the sparsity and morphology in BLT. Specifically, an adaptive grouping prior model is proposed to adjust the grouping according to the intensity of the mesh nodes during the optimization process. RESULTS Numerical simulations and in vivo experiments demonstrate that AGBSBL yields a high position and morphology recovery accuracy, stability, and practicality. CONCLUSION The proposed method is a robust and effective reconstruction algorithm for BLT. Moreover, the proposed adaptive grouping strategy can further increase the practicality of BLT in biomedical applications.
Collapse
|