Makeyev O, Ye-Lin Y, Prats-Boluda G, Garcia-Casado J. Comprehensive Optimization of the Tripolar Concentric Ring Electrode Based on Its Finite Dimensions Model and Confirmed by Finite Element Method Modeling.
SENSORS 2021;
21:s21175881. [PMID:
34502772 PMCID:
PMC8434583 DOI:
10.3390/s21175881]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022]
Abstract
The optimization performed in this study is based on the finite dimensions model of the concentric ring electrode as opposed to the negligible dimensions model used in the past. This makes the optimization problem comprehensive, as all of the electrode parameters including, for the first time, the radius of the central disc and individual widths of concentric rings, are optimized simultaneously. The optimization criterion used is maximizing the accuracy of the surface Laplacian estimation, as the ability to estimate the Laplacian at each electrode constitutes primary biomedical significance of concentric ring electrodes. For tripolar concentric ring electrodes, the optimal configuration was compared to previously proposed linearly increasing inter-ring distances and constant inter-ring distances configurations of the same size and based on the same finite dimensions model. The obtained analytic results suggest that previously proposed configurations correspond to almost two-fold and more than three-fold increases in the Laplacian estimation error compared with the optimal configuration proposed in this study, respectively. These analytic results are confirmed using finite element method modeling, which was adapted to the finite dimensions model of the concentric ring electrode for the first time. Moreover, the finite element method modeling results suggest that optimal electrode configuration may also offer improved sensitivity and spatial resolution.
Collapse