1
|
Micera S, Menciassi A, Cianferotti L, Gruppioni E, Lionetti V. Organ Neuroprosthetics: Connecting Transplanted and Artificial Organs with the Nervous System. Adv Healthc Mater 2024; 13:e2302896. [PMID: 38656615 DOI: 10.1002/adhm.202302896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Implantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to treat diseases such as diabetes or hypertension. Here, this study proposes to extend the use of these technologies to (re-)establish the connection between new (transplanted or artificial) organs and the nervous system in order to increase the long-term efficacy and the effective biointegration of these solutions. In this perspective paper, some clinically relevant applications of this approach are briefly described. Then, the choices that neural engineers must implement about the type, implantation location, and closed-loop control algorithms to successfully realize this approach are highlighted. It is believed that these new "organ neuroprostheses" are going to become more and more valuable and very effective solutions in the years to come.
Collapse
Affiliation(s)
- Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Interdisciplinary Research Center Health Science, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Neuro-X Institute, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Arianna Menciassi
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Interdisciplinary Research Center Health Science, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Luisella Cianferotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, 50121, Italy
| | | | - Vincenzo Lionetti
- Interdisciplinary Research Center Health Science, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- UOSVD Anesthesia and Resuscitation, Fondazione Toscana G. Monasterio, Pisa, 56127, Italy
| |
Collapse
|
2
|
Zeng XX, Wu Y. Strategies of Bladder Reconstruction after Partial or Radical Cystectomy for Bladder Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01163-0. [PMID: 38761327 DOI: 10.1007/s12033-024-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
The standard strategy is to reconstruct bladder by use of bowel segments as material in bladder cancer with radical cystectomy clinically. Both natural derived and non natural derived materials are investigated in bladder reconstruction. Studies on mechanical bladder, bladder transplantation and bladder xenotransplantation are currently limited although heart and kidney transplantation or xenotransplantation are successful to a certain extent, and bone prostheses are applied in clinical contexts. Earlier limited number of studies associated with bladder xenograft from animals to humans were not particular promising in results. Although there have been investigations on pig to human cardiac xenotransplantation with CRISPR Cas9 gene editing, the CRISPR Cas technique is not yet widely researched in porcine bladder related gene editing for the potential of human bladder replacement for bladder cancer. The advancement of technologies such as gene editing, bioprinting and induced pluripotent stem cells allow further research into partial or whole bladder replacement strategies. Porcine bladder is suggested as a potential source material for bladder reconstruction due to its alikeness to human bladder. Challenges that exist with all these approaches need to be overcome. This paper aims to review gene editing technology such as the CRISPR Cas systems as tools in bladder reconstruction, bladder xenotransplantation and hybrid bladder with technologies of induced pluripotent stem cells and genome editing, bioprinting for bladder replacement for bladder reconstruction and to restore normal bladder control function after cystectomy for bladder cancer.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan City, 528000, Guangdong Province, People's Republic of China.
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Changzhou, 213022, Jiangsu Province, People's Republic of China.
| | - Yuyan Wu
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan City, 528000, Guangdong Province, People's Republic of China
| |
Collapse
|
3
|
Hu L, Bonnemain J, Saeed MY, Singh M, Quevedo Moreno D, Vasilyev NV, Roche ET. An implantable soft robotic ventilator augments inspiration in a pig model of respiratory insufficiency. Nat Biomed Eng 2023; 7:110-123. [PMID: 36509912 PMCID: PMC9991903 DOI: 10.1038/s41551-022-00971-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Abstract
Severe diaphragm dysfunction can lead to respiratory failure and to the need for permanent mechanical ventilation. Yet permanent tethering to a mechanical ventilator through the mouth or via tracheostomy can hinder a patient's speech, swallowing ability and mobility. Here we show, in a porcine model of varied respiratory insufficiency, that a contractile soft robotic actuator implanted above the diaphragm augments its motion during inspiration. Synchronized actuation of the diaphragm-assist implant with the native respiratory effort increased tidal volumes and maintained ventilation flow rates within the normal range. Robotic implants that intervene at the diaphragm rather than at the upper airway and that augment physiological metrics of ventilation may restore respiratory performance without sacrificing quality of life.
Collapse
Affiliation(s)
- Lucy Hu
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego Quevedo Moreno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Casagrande G, Ibrahimi M, Semproni F, Iacovacci V, Menciassi A. Hydraulic Detrusor for Artificial Bladder Active Voiding. Soft Robot 2022; 10:269-279. [PMID: 35759369 DOI: 10.1089/soro.2021.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gold standard treatment for bladder cancer is radical cystectomy that implies bladder removal coupled to urinary diversions. Despite the serious complications and the impossibility of controlled active voiding, bladder substitution with artificial systems is a challenge and cannot represent a real option, yet. In this article, we present hydraulic artificial detrusor prototypes to control and drive the voiding of an artificial bladder (AB). These prototypes rely on two actuator designs (origami and bellows) based either on negative or positive operating pressure, to be combined with an AB structure. Based on the bladder geometry and size, we optimized the actuators in terms of contraction/expansion performances, minimizing the liquid volume required for actuation and exploring different actuator arrangements to maximize the voiding efficiency. To operate the actuators, an ad hoc electrohydraulic circuit was developed for transferring liquid between the actuators and a reservoir, both of them intended to be implanted. The AB, actuators, and reservoir were fabricated with biocompatible flexible thermoplastic materials by a heat-sealing process. We assessed the voiding efficiency with benchtop experiments by varying the actuator type and arrangement at different simulated patient positions (horizontal, 45° tilted, and vertical) to identify the optimal configuration and actuation strategy. The most efficient solution relies on two bellows actuators anchored to the AB. This artificial detrusor design resulted in a voiding efficiency of about 99%, 99%, and 89%, in the vertical, 45° tilted, and horizontal positions, respectively. The relative voiding time was reduced by about 17, 24, and 55 s compared with the unactuated bladder.
Collapse
Affiliation(s)
- Giada Casagrande
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Michele Ibrahimi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Federica Semproni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Veronica Iacovacci
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy.,Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Arianna Menciassi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| |
Collapse
|
5
|
Holmes-Martin K, Zhu M, Xiao S, Arab Hassani F. Advances in Assistive Electronic Device Solutions for Urology. MICROMACHINES 2022; 13:mi13040551. [PMID: 35457855 PMCID: PMC9028141 DOI: 10.3390/mi13040551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
Recent technology advances have led urology to become one of the leading specialities to utilise novel electronic systems to manage urological ailments. Contemporary bladder management strategies such as urinary catheters can provide a solution but leave the user mentally and physically debilitated. The unique properties of modern electronic devices, i.e., flexibility, stretchability, and biocompatibility, have allowed a plethora of new technologies to emerge. Many novel electronic device solutions in urology have been developed for treating impaired bladder disorders. These disorders include overactive bladder (OAB), underactive bladder (UAB) and other-urinary-affecting disorders (OUAD). This paper reviews common causes and conservative treatment strategies for OAB, UAB and OUAD, discussing the challenges and drawbacks of such treatments. Subsequently, this paper gives insight into clinically approved and research-based electronic advances in urology. Advances in this area cover bladder-stimulation and -monitoring devices, robot-assistive surgery, and bladder and sphincter prosthesis. This study aims to introduce the latest advances in electronic solutions for urology, comparing their advantages and disadvantages, and concluding with open problems for future urological device solutions.
Collapse
|