1
|
Ilg W, Milne S, Schmitz-Hübsch T, Alcock L, Beichert L, Bertini E, Mohamed Ibrahim N, Dawes H, Gomez CM, Hanagasi H, Kinnunen KM, Minnerop M, Németh AH, Newman J, Ng YS, Rentz C, Samanci B, Shah VV, Summa S, Vasco G, McNames J, Horak FB. Quantitative Gait and Balance Outcomes for Ataxia Trials: Consensus Recommendations by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1566-1592. [PMID: 37955812 PMCID: PMC11269489 DOI: 10.1007/s12311-023-01625-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials.This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes.
Collapse
Affiliation(s)
- Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 25, 72076, Tübingen, Germany.
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany.
| | - Sarah Milne
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, Melbourne University, Melbourne, VIC, Australia
- Physiotherapy Department, Monash Health, Clayton, VIC, Australia
- School of Primary and Allied Health Care, Monash University, Frankston, VIC, Australia
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation of Max-Delbrueck Center for Molecular Medicine and Charité, Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Lukas Beichert
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, Rome, Italy
| | | | - Helen Dawes
- NIHR Exeter BRC, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Hasmet Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1)), Research Centre Juelich, Juelich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jane Newman
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Clara Rentz
- Institute of Neuroscience and Medicine (INM-1)), Research Centre Juelich, Juelich, Germany
| | - Bedia Samanci
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vrutangkumar V Shah
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| | - Susanna Summa
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Neurological Science and Neurorehabilitation Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gessica Vasco
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Neurological Science and Neurorehabilitation Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - James McNames
- APDM Precision Motion, Clario, Portland, OR, USA
- Department of Electrical and Computer Engineering, Portland State University, Portland, OR, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| |
Collapse
|
2
|
Bibbo D, De Marchis C, Schmid M, Ranaldi S. Machine learning to detect, stage and classify diseases and their symptoms based on inertial sensor data: a mapping review. Physiol Meas 2023; 44:12TR01. [PMID: 38061062 DOI: 10.1088/1361-6579/ad133b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
This article presents a systematic review aimed at mapping the literature published in the last decade on the use of machine learning (ML) for clinical decision-making through wearable inertial sensors. The review aims to analyze the trends, perspectives, strengths, and limitations of current literature in integrating ML and inertial measurements for clinical applications. The review process involved defining four research questions and applying four relevance assessment indicators to filter the search results, providing insights into the pathologies studied, technologies and setups used, data processing schemes, ML techniques applied, and their clinical impact. When combined with ML techniques, inertial measurement units (IMUs) have primarily been utilized to detect and classify diseases and their associated motor symptoms. They have also been used to monitor changes in movement patterns associated with the presence, severity, and progression of pathology across a diverse range of clinical conditions. ML models trained with IMU data have shown potential in improving patient care by objectively classifying and predicting motor symptoms, often with a minimally encumbering setup. The findings contribute to understanding the current state of ML integration with wearable inertial sensors in clinical practice and identify future research directions. Despite the widespread adoption of these technologies and techniques in clinical applications, there is still a need to translate them into routine clinical practice. This underscores the importance of fostering a closer collaboration between technological experts and professionals in the medical field.
Collapse
Affiliation(s)
- Daniele Bibbo
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Rome, Italy
| | | | - Maurizio Schmid
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Rome, Italy
| | - Simone Ranaldi
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Rome, Italy
| |
Collapse
|
3
|
Ngo T, Abeysekara LL, Pathirana PN, Corben LA, Delatycki MB, Horne M, Szmulewicz DJ, Roberts M, Milne SC. Modified Recurrence Quantification Analysis for Objective Assessment of Cerebellar Ataxia. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082771 DOI: 10.1109/embc40787.2023.10340331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Cerebellar Ataxia (CA) is a neurological condition that affects coordination, balance and speech. Assessing its severity is important for developing effective treatment and rehabilitation plans. Traditional assessment methods involve a clinician instructing a person with ataxia to perform tests and assigning a severity score based on their performance. However, this approach is subjective as it relies on the clinician's experience, and can vary between clinicians. To address this subjectivity, some researchers have developed automated assessment methods using signal processing and data-driven approaches, such as supervised machine learning. These methods still rely on subjective ground truth and can perform poorly in real-world scenarios. This research proposed an alternative approach that uses signal processing to modify recurrence plots and compare the severity of ataxia in a person with CA to a control cohort. The highest correlation score obtained was 0.782 on the back sensor with the feet-apart and eyes-open test. The contributions of the research include modifying the recurrence plot as a measurement tool for assessing CA severity, proposing a new approach to assess severity by comparing kinematic data between people with CA and a control reference group, and identifying the best subtest and sensor position for practical use in CA assessments.
Collapse
|
4
|
Scimeca S, Amato F, Olmo G, Asci F, Suppa A, Costantini G, Saggio G. Robust and language-independent acoustic features in Parkinson's disease. Front Neurol 2023; 14:1198058. [PMID: 37384279 PMCID: PMC10294689 DOI: 10.3389/fneur.2023.1198058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction The analysis of vocal samples from patients with Parkinson's disease (PDP) can be relevant in supporting early diagnosis and disease monitoring. Intriguingly, speech analysis embeds several complexities influenced by speaker characteristics (e.g., gender and language) and recording conditions (e.g., professional microphones or smartphones, supervised, or non-supervised data collection). Moreover, the set of vocal tasks performed, such as sustained phonation, reading text, or monologue, strongly affects the speech dimension investigated, the feature extracted, and, as a consequence, the performance of the overall algorithm. Methods We employed six datasets, including a cohort of 176 Healthy Control (HC) participants and 178 PDP from different nationalities (i.e., Italian, Spanish, Czech), recorded in variable scenarios through various devices (i.e., professional microphones and smartphones), and performing several speech exercises (i.e., vowel phonation, sentence repetition). Aiming to identify the effectiveness of different vocal tasks and the trustworthiness of features independent of external co-factors such as language, gender, and data collection modality, we performed several intra- and inter-corpora statistical analyses. In addition, we compared the performance of different feature selection and classification models to evaluate the most robust and performing pipeline. Results According to our results, the combined use of sustained phonation and sentence repetition should be preferred over a single exercise. As for the set of features, the Mel Frequency Cepstral Coefficients demonstrated to be among the most effective parameters in discriminating between HC and PDP, also in the presence of heterogeneous languages and acquisition techniques. Conclusion Even though preliminary, the results of this work can be exploited to define a speech protocol that can effectively capture vocal alterations while minimizing the effort required to the patient. Moreover, the statistical analysis identified a set of features minimally dependent on gender, language, and recording modalities. This discloses the feasibility of extensive cross-corpora tests to develop robust and reliable tools for disease monitoring and staging and PDP follow-up.
Collapse
Affiliation(s)
- Sabrina Scimeca
- Department of Control and Computer Engineering, Polytechnic University of Turin, Turin, Italy
| | - Federica Amato
- Department of Control and Computer Engineering, Polytechnic University of Turin, Turin, Italy
| | - Gabriella Olmo
- Department of Control and Computer Engineering, Polytechnic University of Turin, Turin, Italy
| | - Francesco Asci
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Antonio Suppa
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Giovanni Costantini
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Saggio
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Jabri S, Carender W, Wiens J, Sienko KH. Automatic ML-based vestibular gait classification: examining the effects of IMU placement and gait task selection. J Neuroeng Rehabil 2022; 19:132. [PMID: 36456966 PMCID: PMC9713134 DOI: 10.1186/s12984-022-01099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Vestibular deficits can impair an individual's ability to maintain postural and/or gaze stability. Characterizing gait abnormalities among individuals affected by vestibular deficits could help identify patients at high risk of falling and inform rehabilitation programs. Commonly used gait assessment tools rely on simple measures such as timing and visual observations of path deviations by clinicians. These simple measures may not capture subtle changes in gait kinematics. Therefore, we investigated the use of wearable inertial measurement units (IMUs) and machine learning (ML) approaches to automatically discriminate between gait patterns of individuals with vestibular deficits and age-matched controls. The goal of this study was to examine the effects of IMU placement and gait task selection on the performance of automatic vestibular gait classifiers. METHODS Thirty study participants (15 with vestibular deficits and 15 age-matched controls) participated in a single-session gait study during which they performed seven gait tasks while donning a full-body set of IMUs. Classification performance was reported in terms of area under the receiver operating characteristic curve (AUROC) scores for Random Forest models trained on data from each IMU placement for each gait task. RESULTS Several models were able to classify vestibular gait better than random (AUROC > 0.5), but their performance varied according to IMU placement and gait task selection. Results indicated that a single IMU placed on the left arm when walking with eyes closed resulted in the highest AUROC score for a single IMU (AUROC = 0.88 [0.84, 0.89]). Feature permutation results indicated that participants with vestibular deficits reduced their arm swing compared to age-matched controls while they walked with eyes closed. CONCLUSIONS These findings highlighted differences in upper extremity kinematics during walking with eyes closed that were characteristic of vestibular deficits and showed evidence of the discriminative ability of IMU-based automated screening for vestibular deficits. Further research should explore the mechanisms driving arm swing differences in the vestibular population.
Collapse
Affiliation(s)
- Safa Jabri
- grid.214458.e0000000086837370Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Wendy Carender
- grid.412590.b0000 0000 9081 2336Department of Otolaryngology, Michigan Medicine, Ann Arbor, MI 48109 USA
| | - Jenna Wiens
- grid.214458.e0000000086837370Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
| | - Kathleen H. Sienko
- grid.214458.e0000000086837370Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
6
|
Hohenfeld C, Terstiege U, Dogan I, Giunti P, Parkinson MH, Mariotti C, Nanetti L, Fichera M, Durr A, Ewenczyk C, Boesch S, Nachbauer W, Klopstock T, Stendel C, Rodríguez de Rivera Garrido FJ, Schöls L, Hayer SN, Klockgether T, Giordano I, Didszun C, Rai M, Pandolfo M, Rauhut H, Schulz JB, Reetz K. Prediction of the disease course in Friedreich ataxia. Sci Rep 2022; 12:19173. [PMID: 36357508 PMCID: PMC9649725 DOI: 10.1038/s41598-022-23666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
We explored whether disease severity of Friedreich ataxia can be predicted using data from clinical examinations. From the database of the European Friedreich Ataxia Consortium for Translational Studies (EFACTS) data from up to five examinations of 602 patients with genetically confirmed FRDA was included. Clinical instruments and important symptoms of FRDA were identified as targets for prediction, while variables such as genetics, age of disease onset and first symptom of the disease were used as predictors. We used modelling techniques including generalised linear models, support-vector-machines and decision trees. The scale for rating and assessment of ataxia (SARA) and the activities of daily living (ADL) could be predicted with predictive errors quantified by root-mean-squared-errors (RMSE) of 6.49 and 5.83, respectively. Also, we were able to achieve reasonable performance for loss of ambulation (ROC-AUC score of 0.83). However, predictions for the SCA functional assessment (SCAFI) and presence of cardiological symptoms were difficult. In conclusion, we demonstrate that some clinical features of FRDA can be predicted with reasonable error; being a first step towards future clinical applications of predictive modelling. In contrast, targets where predictions were difficult raise the question whether there are yet unknown variables driving the clinical phenotype of FRDA.
Collapse
Affiliation(s)
- Christian Hohenfeld
- grid.1957.a0000 0001 0728 696XDepartment of Neurology, RWTH Aachen University, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XJARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich and RWTH Aachen University, 52056 Aachen, Germany
| | - Ulrich Terstiege
- grid.1957.a0000 0001 0728 696XChair for Mathematics of Information Processing, RWTH Aachen University, 52062 Aachen, Germany
| | - Imis Dogan
- grid.1957.a0000 0001 0728 696XDepartment of Neurology, RWTH Aachen University, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XJARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich and RWTH Aachen University, 52056 Aachen, Germany
| | - Paola Giunti
- grid.83440.3b0000000121901201Department of Clinical and Movement Neurosciences, Ataxia Centre, UCL-Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Michael H. Parkinson
- grid.83440.3b0000000121901201Department of Clinical and Movement Neurosciences, Ataxia Centre, UCL-Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Caterina Mariotti
- grid.417894.70000 0001 0707 5492Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Lorenzo Nanetti
- grid.417894.70000 0001 0707 5492Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Mario Fichera
- grid.417894.70000 0001 0707 5492Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy ,grid.7563.70000 0001 2174 1754PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alexandra Durr
- grid.411439.a0000 0001 2150 9058Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, 75646 Paris, France
| | - Claire Ewenczyk
- grid.411439.a0000 0001 2150 9058Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, 75646 Paris, France
| | - Sylvia Boesch
- grid.5361.10000 0000 8853 2677Department of Neurology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Wolfgang Nachbauer
- grid.5361.10000 0000 8853 2677Department of Neurology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Klopstock
- grid.5252.00000 0004 1936 973XDepartment of Neurology, Friedrich Baur Institute, University Hospital, LMU, 80336 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Claudia Stendel
- grid.5252.00000 0004 1936 973XDepartment of Neurology, Friedrich Baur Institute, University Hospital, LMU, 80336 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Ludger Schöls
- grid.10392.390000 0001 2190 1447Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Stefanie N. Hayer
- grid.10392.390000 0001 2190 1447Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Klockgether
- grid.15090.3d0000 0000 8786 803XDepartment of Neurology, University Hospital of Bonn, 53127 Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ilaria Giordano
- grid.15090.3d0000 0000 8786 803XDepartment of Neurology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Claire Didszun
- grid.1957.a0000 0001 0728 696XDepartment of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Myriam Rai
- grid.4989.c0000 0001 2348 0746Laboratory of Experimental Neurology, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Massimo Pandolfo
- grid.4989.c0000 0001 2348 0746Laboratory of Experimental Neurology, Université Libre de Bruxelles, 1070 Brussels, Belgium ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4 Canada
| | - Holger Rauhut
- grid.1957.a0000 0001 0728 696XChair for Mathematics of Information Processing, RWTH Aachen University, 52062 Aachen, Germany
| | - Jörg B. Schulz
- grid.1957.a0000 0001 0728 696XDepartment of Neurology, RWTH Aachen University, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XJARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich and RWTH Aachen University, 52056 Aachen, Germany
| | - Kathrin Reetz
- grid.1957.a0000 0001 0728 696XDepartment of Neurology, RWTH Aachen University, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XJARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich and RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
7
|
Ngo T, Nguyen DC, Pathirana PN, Corben LA, Horne M, Szmulewicz DJ. Blockchained Federated Learning for Privacy and Security Preservation: Practical Example of Diagnosing Cerebellar Ataxia. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4925-4928. [PMID: 36086180 DOI: 10.1109/embc48229.2022.9871371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cerebellar ataxia (CA) refers to the incoordination of movements of the eyes, speech, trunk, and limbs caused by cerebellar dysfunction. Conventional machine learning (ML) utilizes centralised databases to train a model of diagnosing CA. Despite the high accuracy, these approaches raise privacy concern as participants' data revealed in the data centre. Federated learning is an effective distributed solution to exchange only the ML model weight rather than the raw data. However, FL is also vulnerable to network attacks from malicious devices. In this study, we depict the concept of blockchained FL with individual's validators. We simulate the proposed approach with real-world dataset collected from kinematic sensors of CA individuals with four geographically separated clinics. Experimental results show the blockchained FL maintains competitive accuracy of 89.30%, while preserving both privacy and security.
Collapse
|
8
|
Bo F, Yerebakan M, Dai Y, Wang W, Li J, Hu B, Gao S. IMU-Based Monitoring for Assistive Diagnosis and Management of IoHT: A Review. Healthcare (Basel) 2022; 10:healthcare10071210. [PMID: 35885736 PMCID: PMC9318359 DOI: 10.3390/healthcare10071210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/22/2023] Open
Abstract
With the rapid development of Internet of Things (IoT) technologies, traditional disease diagnoses carried out in medical institutions can now be performed remotely at home or even ambient environments, yielding the concept of the Internet of Health Things (IoHT). Among the diverse IoHT applications, inertial measurement unit (IMU)-based systems play a significant role in the detection of diseases in many fields, such as neurological, musculoskeletal, and mental. However, traditional numerical interpretation methods have proven to be challenging to provide satisfying detection accuracies owing to the low quality of raw data, especially under strong electromagnetic interference (EMI). To address this issue, in recent years, machine learning (ML)-based techniques have been proposed to smartly map IMU-captured data on disease detection and progress. After a decade of development, the combination of IMUs and ML algorithms for assistive disease diagnosis has become a hot topic, with an increasing number of studies reported yearly. A systematic search was conducted in four databases covering the aforementioned topic for articles published in the past six years. Eighty-one articles were included and discussed concerning two aspects: different ML techniques and application scenarios. This review yielded the conclusion that, with the help of ML technology, IMUs can serve as a crucial element in disease diagnosis, severity assessment, characteristic estimation, and monitoring during the rehabilitation process. Furthermore, it summarizes the state-of-the-art, analyzes challenges, and provides foreseeable future trends for developing IMU-ML systems for IoHT.
Collapse
Affiliation(s)
- Fan Bo
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mustafa Yerebakan
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Yanning Dai
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Weibing Wang
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.L.); (B.H.); (S.G.)
| | - Boyi Hu
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA;
- Correspondence: (J.L.); (B.H.); (S.G.)
| | - Shuo Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- Correspondence: (J.L.); (B.H.); (S.G.)
| |
Collapse
|
9
|
Ngo T, Nguyen DC, Pathirana PN, Corben LA, Delatycki MB, Horne M, Szmulewicz DJ, Roberts M. Federated Deep Learning for the Diagnosis of Cerebellar Ataxia: Privacy Preservation and Auto-crafted Feature Extractor. IEEE Trans Neural Syst Rehabil Eng 2022; 30:803-811. [PMID: 35316188 DOI: 10.1109/tnsre.2022.3161272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cerebellar ataxia (CA) is concerned with the incoordination of movement caused by cerebellar dysfunction. Movements of the eyes, speech, trunk, and limbs are affected. Conventional machine learning approaches utilizing centralised databases have been used to objectively diagnose and quantify the severity of CA. Although these approaches achieved high accuracy, large scale deployment will require large clinics and raises privacy concerns. In this study, we propose an image transformation-based approach to leverage the advantages of state-of-the-art deep learning with federated learning in diagnosing CA. We use motion capture sensors during the performance of a standard neurological balance test obtained from four geographically separated clinics. The recurrence plot, melspectrogram, and poincaré plot are three transformation techniques explored. Experimental results indicate that the recurrence plot yields the highest validation accuracy (86.69%) with MobileNetV2 model in diagnosing CA. The proposed scheme provides a practical solution with high diagnosis accuracy, removing the need for feature engineering and preserving data privacy for a large-scale deployment.
Collapse
|