1
|
Chhetry A, Kim H, Kim YS. A Wireless Smart Adhesive Integrated with a Thin-Film Stretchable Inverted-F Antenna. SENSORS (BASEL, SWITZERLAND) 2024; 24:7155. [PMID: 39598933 PMCID: PMC11598246 DOI: 10.3390/s24227155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
In recent years, skin-mounted devices have gained prominence in personal wellness and remote patient care. However, the rigid components of many wearables often cause discomfort due to their mechanical mismatch with the skin. To address this, we extend the use of the solderable stretchable sensing system (S4) to develop a wireless skin temperature-sensing smart adhesive. This work introduces two novel types of progress in wearables: the first demonstration of Bluetooth-integration and development of a thin-film-based stretchable inverted-F antenna (SIFA). Characterized through RF simulations, vector network analysis under deformation, and anechoic chamber tests, SIFA demonstrated potential as a low-profile, on-body Bluetooth antenna with a resonant frequency of 2.45 GHz that helps S4 retain its thin overall profile. The final S4 system achieved high correlation (R = 0.95, p < 0.001, mean standard error = 0.04 °C) with commercial sensors during daily activities. These findings suggest that S4-based smart adhesives integrated with SIFAs could offer a promising platform for comfortable, efficient, and functional skin-integrated wearables, supporting a range of health monitoring applications.
Collapse
Affiliation(s)
- Ashok Chhetry
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.C.); (H.K.)
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hodam Kim
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.C.); (H.K.)
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yun Soung Kim
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.C.); (H.K.)
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Mei S, Yi H, Zhao J, Xu Y, Shi L, Qin Y, Jiang Y, Guo J, Li Z, Wu L. High-density, highly sensitive sensor array of spiky carbon nanospheres for strain field mapping. Nat Commun 2024; 15:3752. [PMID: 38704400 PMCID: PMC11069524 DOI: 10.1038/s41467-024-47283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/22/2024] [Indexed: 05/06/2024] Open
Abstract
While accurate mapping of strain distribution is crucial for assessing stress concentration and estimating fatigue life in engineering applications, conventional strain sensor arrays face a great challenge in balancing sensitivity and sensing density for effective strain mapping. In this study, we present a Fowler-Nordheim tunneling effect of monodispersed spiky carbon nanosphere array on polydimethylsiloxane as strain sensor arrays to achieve a sensitivity up to 70,000, a sensing density of 100 pixel cm-2, and logarithmic linearity over 99% within a wide strain range of 0% to 60%. The highly ordered assembly of spiky carbon nanospheres in each unit also ensures high inter-unit consistency (standard deviation ≤3.82%). Furthermore, this sensor array can conformally cover diverse surfaces, enabling accurate acquisition of strain distributions. The sensing array offers a convenient approach for mapping strain fields in various applications such as flexible electronics, soft robotics, biomechanics, and structure health monitoring.
Collapse
Affiliation(s)
- Shuxing Mei
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Haokun Yi
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Jun Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Yanting Xu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Lan Shi
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Yajie Qin
- Micro-Nano System Center, School of Information Science and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Yizhou Jiang
- Micro-Nano System Center, School of Information Science and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Jiajie Guo
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
| |
Collapse
|
3
|
Gao Y, Zhang H, Song B, Zhao C, Lu Q. Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface. BIOSENSORS 2023; 13:787. [PMID: 37622873 PMCID: PMC10452760 DOI: 10.3390/bios13080787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Epidermal electronics, an emerging interdisciplinary field, is advancing the development of flexible devices that can seamlessly integrate with the skin. These devices, especially Electric Double Layer (EDL)-based sensors, overcome the limitations of conventional electronic devices, offering high sensitivity, rapid response, and excellent stability. Especially, Electric Double Layer (EDL)-based epidermal sensors show great potential in the application of wearable electronics to detect biological signals due to their high sensitivity, fast response, and excellent stability. The advantages can be attributed to the biocompatibility of the materials, the flexibility of the devices, and the large capacitance due to the EDL effect. Furthermore, we discuss the potential of EDL epidermal electronics as wearable sensors for health monitoring and wound healing. These devices can analyze various biofluids, offering real-time feedback on parameters like pH, temperature, glucose, lactate, and oxygen levels, which aids in accurate diagnosis and effective treatment. Beyond healthcare, we explore the role of EDL epidermal electronics in human-machine interaction, particularly their application in prosthetics and pressure-sensing robots. By mimicking the flexibility and sensitivity of human skin, these devices enhance the functionality and user experience of these systems. This review summarizes the latest advancements in EDL-based epidermal electronic devices, offering a perspective for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Yuan Gao
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| | - Hanchu Zhang
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| | - Bowen Song
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| | - Chun Zhao
- School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
| | - Qifeng Lu
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| |
Collapse
|
4
|
Liu L, Zhang X. A Focused Review on the Flexible Wearable Sensors for Sports: From Kinematics to Physiologies. MICROMACHINES 2022; 13:1356. [PMID: 36014277 PMCID: PMC9412724 DOI: 10.3390/mi13081356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 05/15/2023]
Abstract
As an important branch of wearable electronics, highly flexible and wearable sensors are gaining huge attention due to their emerging applications. In recent years, the participation of wearable devices in sports has revolutionized the way to capture the kinematical and physiological status of athletes. This review focuses on the rapid development of flexible and wearable sensor technologies for sports. We identify and discuss the indicators that reveal the performance and physical condition of players. The kinematical indicators are mentioned according to the relevant body parts, and the physiological indicators are classified into vital signs and metabolisms. Additionally, the available wearable devices and their significant applications in monitoring these kinematical and physiological parameters are described with emphasis. The potential challenges and prospects for the future developments of wearable sensors in sports are discussed comprehensively. This review paper will assist both athletic individuals and researchers to have a comprehensive glimpse of the wearable techniques applied in different sports.
Collapse
Affiliation(s)
- Lei Liu
- Department of Sports, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xuefeng Zhang
- Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
5
|
Wu H, Huang Y, Yin Z. Flexible hybrid electronics: Enabling integration techniques and applications. SCIENCE CHINA. TECHNOLOGICAL SCIENCES 2022; 65:1995-2006. [PMID: 35892001 PMCID: PMC9302228 DOI: 10.1007/s11431-022-2074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The conventional electronic systems enabled by rigid electronic are prone to malfunction under deformation, greatly limiting their application prospects. As an emerging platform for applications in healthcare monitoring and human-machine interface (HMI), flexible electronics have attracted growing attention due to its remarkable advantages, such as stretchability, flexibility, conformability, and wearing comfort. However, to realize the overall electronic systems, rigid components are also required for functions such as signal acquisition and transmission. Therefore, flexible hybrid electronics (FHE), which simultaneously possesses the desirable flexibility and enables the integration of rigid components for functionality, has been emerging as a promising strategy. This paper reviews the enabling integration techniques for FHE, including technologies for two-dimensional/three-dimensional (2D/3D) interconnects, bonding of rigid integrated circuit (IC) chips to soft substrate, stress-isolation structures, and representative applications of FHE. In addition, future challenges and opportunities involved in FHE-based systems are also discussed.
Collapse
Affiliation(s)
- Hao Wu
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - YongAn Huang
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - ZhouPing Yin
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|