1
|
Illner V, Novotný M, Kouba T, Tykalová T, Šimek M, Sovka P, Švihlík J, Růžička E, Šonka K, Dušek P, Rusz J. Smartphone Voice Calls Provide Early Biomarkers of Parkinsonism in Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2024; 39:1752-1762. [PMID: 39001636 DOI: 10.1002/mds.29921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Speech dysfunction represents one of the initial motor manifestations to develop in Parkinson's disease (PD) and is measurable through smartphone. OBJECTIVE The aim was to develop a fully automated and noise-resistant smartphone-based system that can unobtrusively screen for prodromal parkinsonian speech disorder in subjects with isolated rapid eye movement sleep behavior disorder (iRBD) in a real-world scenario. METHODS This cross-sectional study assessed regular, everyday voice call data from individuals with iRBD compared to early PD patients and healthy controls via a developed smartphone application. The participants also performed an active, regular reading of a short passage on their smartphone. Smartphone data were continuously collected for up to 3 months after the standard in-person assessments at the clinic. RESULTS A total of 3525 calls that led to 5990 minutes of preprocessed speech were extracted from 72 participants, comprising 21 iRBD patients, 26 PD patients, and 25 controls. With a high area under the curve of 0.85 between iRBD patients and controls, the combination of passive and active smartphone data provided a comparable or even more sensitive evaluation than laboratory examination using a high-quality microphone. The most sensitive features to induce prodromal neurodegeneration in iRBD included imprecise vowel articulation during phone calls (P = 0.03) and monopitch in reading (P = 0.05). Eighteen minutes of speech corresponding to approximately nine calls was sufficient to obtain the best sensitivity for the screening. CONCLUSION We consider the developed tool widely applicable to deep longitudinal digital phenotyping data with future applications in neuroprotective trials, deep brain stimulation optimization, neuropsychiatry, speech therapy, population screening, and beyond. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vojtěch Illner
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Michal Novotný
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Tomáš Kouba
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Tereza Tykalová
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Michal Šimek
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Pavel Sovka
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Švihlík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Mathematics, Informatics and Cybernetics, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Department of Neurology and ARTORG Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Ileșan RR, Ștefănigă SA, Fleșar R, Beyer M, Ginghină E, Peștean AS, Hirsch MC, Perju-Dumbravă L, Faragó P. In Silico Decoding of Parkinson's: Speech & Writing Analysis. J Clin Med 2024; 13:5573. [PMID: 39337061 PMCID: PMC11433360 DOI: 10.3390/jcm13185573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Parkinson's disease (PD) has transitioned from a rare condition in 1817 to the fastest-growing neurological disorder globally. The significant increase in cases from 2.5 million in 1990 to 6.1 million in 2016, coupled with predictions of a further doubling by 2040, underscores an impending healthcare challenge. This escalation aligns with global demographic shifts, including rising life expectancy and a growing global population. The economic impact, notably in the U.S., reached $51.9 billion in 2017, with projections suggesting a 46% increase by 2037, emphasizing the substantial socio-economic implications for both patients and caregivers. Coupled with a worldwide demand for health workers that is expected to rise to 80 million by 2030, we have fertile ground for a pandemic. Methods: Our transdisciplinary research focused on early PD detection through running speech and continuous handwriting analysis, incorporating medical, biomedical engineering, AI, and linguistic expertise. The cohort comprised 30 participants, including 20 PD patients at stages 1-4 on the Hoehn and Yahr scale and 10 healthy controls. We employed advanced AI techniques to analyze correlation plots generated from speech and handwriting features, aiming to identify prodromal PD biomarkers. Results: The study revealed distinct speech and handwriting patterns in PD patients compared to controls. Our ParkinsonNet model demonstrated high predictive accuracy, with F1 scores of 95.74% for speech and 96.72% for handwriting analyses. These findings highlight the potential of speech and handwriting as effective early biomarkers for PD. Conclusions: The integration of AI as a decision support system in analyzing speech and handwriting presents a promising approach for early PD detection. This methodology not only offers a novel diagnostic tool but also contributes to the broader understanding of PD's early manifestations. Further research is required to validate these findings in larger, diverse cohorts and to integrate these tools into clinical practice for timely PD pre-diagnosis and management.
Collapse
Affiliation(s)
- Robert Radu Ileșan
- Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 400012 Cluj-Napoca, Romania (L.P.-D.)
- Department of Oral and Maxillofacial Surgery, Lucerne Cantonal Hospital, Spitalstrasse, 6000 Lucerne, Switzerland
| | - Sebastian-Aurelian Ștefănigă
- Department of Computer Science, Faculty of Mathematics and Computer Science, West University of Timisoara, 300223 Timisoara, Romania; (S.-A.Ș.); (R.F.)
| | - Radu Fleșar
- Department of Computer Science, Faculty of Mathematics and Computer Science, West University of Timisoara, 300223 Timisoara, Romania; (S.-A.Ș.); (R.F.)
| | - Michel Beyer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Elena Ginghină
- Department of Anglo-American and German Studies, Faculty of Letters and Arts, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
| | - Ana Sorina Peștean
- Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 400012 Cluj-Napoca, Romania (L.P.-D.)
| | - Martin C. Hirsch
- Institute for Artificial Intelligence in Medicine, Faculty of Medicine, University Hospital Giessen and Marburg, Philipps-Universität Marburg, Baldingerstraße, 35043 Marburg, Germany;
| | - Lăcrămioara Perju-Dumbravă
- Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 400012 Cluj-Napoca, Romania (L.P.-D.)
| | - Paul Faragó
- Bases of Electronics Department, Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Xue Z, Lu H, Zhang T, Little MA. Patient-specific game-based transfer method for Parkinson's disease severity prediction. Artif Intell Med 2024; 150:102810. [PMID: 38553149 DOI: 10.1016/j.artmed.2024.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/02/2023] [Accepted: 02/11/2024] [Indexed: 04/02/2024]
Abstract
Dysphonia is one of the early symptoms of Parkinson's disease (PD). Most existing methods use feature selection methods to find the optimal subset of voice features for all PD patients. Few have considered the heterogeneity between patients, which implies the need to provide specific prediction models for different patients. However, building the specific model faces the challenge of small sample size, which makes it lack generalization ability. Instance transfer is an effective way to solve this problem. Therefore, this paper proposes a patient-specific game-based transfer (PSGT) method for PD severity prediction. First, a selection mechanism is used to select PD patients with similar disease trends to the target patient from the source domain, which reduces the risk of negative transfer. Then, the contribution of the transferred subjects and their instances to the disease estimation of the target subject is fairly evaluated by the Shapley value, which improves the interpretability of the method. Next, the proportion of valid instances in the transferred subjects is determined, and the instances with higher contribution are transferred to further reduce the difference between the transferred instance subset and the target subject. Finally, the selected subset of instances is added to the training set of the target subject, and the extended data is fed into the random forest to improve the performance of the method. Parkinson's telemonitoring dataset is used to evaluate the feasibility and effectiveness. The mean values of mean absolute error, root mean square error, and volatility obtained by predicting motor-UPDRS and total-UPDRS for target patients are 1.59, 1.95, 1.56 and 1.98, 2.54, 1.94, respectively. Experiment results show that the PSGT has better performance in both prediction error and stability over compared methods.
Collapse
Affiliation(s)
- Zaifa Xue
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China; Hebei Key Laboratory of information transmission and signal processing, Qinhuangdao, China.
| | - Huibin Lu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China; Hebei Key Laboratory of information transmission and signal processing, Qinhuangdao, China.
| | - Tao Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China; Hebei Key Laboratory of information transmission and signal processing, Qinhuangdao, China.
| | - Max A Little
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom; Media Lab, Massachusetts Institute of Technology, Cambridge, USA.
| |
Collapse
|
4
|
Karabayir I, Gunturkun F, Butler L, Goldman SM, Kamaleswaran R, Davis RL, Colletta K, Chinthala L, Jefferies JL, Bobay K, Ross GW, Petrovitch H, Masaki K, Tanner CM, Akbilgic O. Externally validated deep learning model to identify prodromal Parkinson's disease from electrocardiogram. Sci Rep 2023; 13:12290. [PMID: 37516770 PMCID: PMC10387090 DOI: 10.1038/s41598-023-38782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Little is known about electrocardiogram (ECG) markers of Parkinson's disease (PD) during the prodromal stage. The aim of the study was to build a generalizable ECG-based fully automatic artificial intelligence (AI) model to predict PD risk during the prodromal stage, up to 5 years before disease diagnosis. This case-control study included samples from Loyola University Chicago (LUC) and University of Tennessee-Methodist Le Bonheur Healthcare (MLH). Cases and controls were matched according to specific characteristics (date, age, sex and race). Clinical data were available from May, 2014 onward at LUC and from January, 2015 onward at MLH, while the ECG data were available as early as 1990 in both institutes. PD was denoted by at least two primary diagnostic codes (ICD9 332.0; ICD10 G20) at least 30 days apart. PD incidence date was defined as the earliest of first PD diagnostic code or PD-related medication prescription. ECGs obtained at least 6 months before PD incidence date were modeled to predict a subsequent diagnosis of PD within three time windows: 6 months-1 year, 6 months-3 years, and 6 months-5 years. We applied a novel deep neural network using standard 10-s 12-lead ECGs to predict PD risk at the prodromal phase. This model was compared to multiple feature engineering-based models. Subgroup analyses for sex, race and age were also performed. Our primary prediction model was a one-dimensional convolutional neural network (1D-CNN) that was built using 131 cases and 1058 controls from MLH, and externally validated on 29 cases and 165 controls from LUC. The model was trained on 90% of the MLH data, internally validated on the remaining 10% and externally validated on LUC data. The best performing model resulted in an external validation AUC of 0.67 when predicting future PD at any time between 6 months and 5 years after the ECG. Accuracy increased when restricted to ECGs obtained within 6 months to 3 years before PD diagnosis (AUC 0.69) and was highest when predicting future PD within 6 months to 1 year (AUC 0.74). The 1D-CNN model based on raw ECG data outperformed multiple models built using more standard ECG feature engineering approaches. These results demonstrate that a predictive model developed in one cohort using only raw 10-s ECGs can effectively classify individuals with prodromal PD in an independent cohort, particularly closer to disease diagnosis. Standard ECGs may help identify individuals with prodromal PD for cost-effective population-level early detection and inclusion in disease-modifying therapeutic trials.
Collapse
Affiliation(s)
- Ibrahim Karabayir
- Cardiovascular Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Fatma Gunturkun
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Liam Butler
- Cardiovascular Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Samuel M Goldman
- Division of Occupational, Environmental, and Climate Medicine, San Francisco Veterans Affairs Medical Center, University of California-San Francisco, 4150 Clement Street, Box 127, San Francisco, CA, 94121, USA.
| | | | - Robert L Davis
- Center for Biomedical Informatics, University of Tennessee Health Science Center, Memphis, USA
| | - Kalea Colletta
- Department of Neurology, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Lokesh Chinthala
- Center for Biomedical Informatics, University of Tennessee Health Science Center, Memphis, USA
| | - John L Jefferies
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kathleen Bobay
- Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - G Webster Ross
- Veterans Affairs Pacific Islands Health Care Systems, Honolulu, HI, USA
| | - Helen Petrovitch
- Pacific Health Research and Education Institute, Honolulu, HI, USA
| | - Kamal Masaki
- Kuakini Medical Center, Honolulu, HI, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Caroline M Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Oguz Akbilgic
- Cardiovascular Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
5
|
Idrisoglu A, Dallora AL, Anderberg P, Berglund JS. Applied Machine Learning Techniques to Diagnose Voice-Affecting Conditions and Disorders: Systematic Literature Review. J Med Internet Res 2023; 25:e46105. [PMID: 37467031 PMCID: PMC10398366 DOI: 10.2196/46105] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Normal voice production depends on the synchronized cooperation of multiple physiological systems, which makes the voice sensitive to changes. Any systematic, neurological, and aerodigestive distortion is prone to affect voice production through reduced cognitive, pulmonary, and muscular functionality. This sensitivity inspired using voice as a biomarker to examine disorders that affect the voice. Technological improvements and emerging machine learning (ML) technologies have enabled possibilities of extracting digital vocal features from the voice for automated diagnosis and monitoring systems. OBJECTIVE This study aims to summarize a comprehensive view of research on voice-affecting disorders that uses ML techniques for diagnosis and monitoring through voice samples where systematic conditions, nonlaryngeal aerodigestive disorders, and neurological disorders are specifically of interest. METHODS This systematic literature review (SLR) investigated the state of the art of voice-based diagnostic and monitoring systems with ML technologies, targeting voice-affecting disorders without direct relation to the voice box from the point of view of applied health technology. Through a comprehensive search string, studies published from 2012 to 2022 from the databases Scopus, PubMed, and Web of Science were scanned and collected for assessment. To minimize bias, retrieval of the relevant references in other studies in the field was ensured, and 2 authors assessed the collected studies. Low-quality studies were removed through a quality assessment and relevant data were extracted through summary tables for analysis. The articles were checked for similarities between author groups to prevent cumulative redundancy bias during the screening process, where only 1 article was included from the same author group. RESULTS In the analysis of the 145 included studies, support vector machines were the most utilized ML technique (51/145, 35.2%), with the most studied disease being Parkinson disease (PD; reported in 87/145, 60%, studies). After 2017, 16 additional voice-affecting disorders were examined, in contrast to the 3 investigated previously. Furthermore, an upsurge in the use of artificial neural network-based architectures was observed after 2017. Almost half of the included studies were published in last 2 years (2021 and 2022). A broad interest from many countries was observed. Notably, nearly one-half (n=75) of the studies relied on 10 distinct data sets, and 11/145 (7.6%) used demographic data as an input for ML models. CONCLUSIONS This SLR revealed considerable interest across multiple countries in using ML techniques for diagnosing and monitoring voice-affecting disorders, with PD being the most studied disorder. However, the review identified several gaps, including limited and unbalanced data set usage in studies, and a focus on diagnostic test rather than disorder-specific monitoring. Despite the limitations of being constrained by only peer-reviewed publications written in English, the SLR provides valuable insights into the current state of research on ML-based voice-affecting disorder diagnosis and monitoring and highlighting areas to address in future research.
Collapse
Affiliation(s)
- Alper Idrisoglu
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
| | - Ana Luiza Dallora
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
| | - Peter Anderberg
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | | |
Collapse
|
6
|
Reichmann H, Klingelhoefer L, Bendig J. The use of wearables for the diagnosis and treatment of Parkinson's disease. J Neural Transm (Vienna) 2023; 130:783-791. [PMID: 36609737 PMCID: PMC10199831 DOI: 10.1007/s00702-022-02575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, with increasing numbers of affected patients. Many patients lack adequate care due to insufficient specialist neurologists/geriatricians, and older patients experience difficulties traveling far distances to reach their treating physicians. A new option for these obstacles would be telemedicine and wearables. During the last decade, the development of wearable sensors has allowed for the continuous monitoring of bradykinesia and dyskinesia. Meanwhile, other systems can also detect tremors, freezing of gait, and gait problems. The most recently developed systems cover both sides of the body and include smartphone apps where the patients have to register their medication intake and well-being. In turn, the physicians receive advice on changing the patient's medication and recommendations for additional supportive therapies such as physiotherapy. The use of smartphone apps may also be adapted to detect PD symptoms such as bradykinesia, tremor, voice abnormalities, or changes in facial expression. Such tools can be used for the general population to detect PD early or for known PD patients to detect deterioration. It is noteworthy that most PD patients can use these digital tools. In modern times, wearable sensors and telemedicine open a new window of opportunity for patients with PD that are easy to use and accessible to most of the population.
Collapse
Affiliation(s)
- Heinz Reichmann
- Department of Neurology, University Hospital Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lisa Klingelhoefer
- Department of Neurology, University Hospital Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Jonas Bendig
- Department of Neurology, University Hospital Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
7
|
Campi M, Peters GW, Toczydlowska D. Ataxic speech disorders and Parkinson's disease diagnostics via stochastic embedding of empirical mode decomposition. PLoS One 2023; 18:e0284667. [PMID: 37099544 PMCID: PMC10132693 DOI: 10.1371/journal.pone.0284667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Medical diagnostic methods that utilise modalities of patient symptoms such as speech are increasingly being used for initial diagnostic purposes and monitoring disease state progression. Speech disorders are particularly prevalent in neurological degenerative diseases such as Parkinson's disease, the focus of the study undertaken in this work. We will demonstrate state-of-the-art statistical time-series methods that combine elements of statistical time series modelling and signal processing with modern machine learning methods based on Gaussian process models to develop methods to accurately detect a core symptom of speech disorder in individuals who have Parkinson's disease. We will show that the proposed methods out-perform standard best practices of speech diagnostics in detecting ataxic speech disorders, and we will focus the study, particularly on a detailed analysis of a well regarded Parkinson's data speech study publicly available making all our results reproducible. The methodology developed is based on a specialised technique not widely adopted in medical statistics that found great success in other domains such as signal processing, seismology, speech analysis and ecology. In this work, we will present this method from a statistical perspective and generalise it to a stochastic model, which will be used to design a test for speech disorders when applied to speech time series signals. As such, this work is making contributions both of a practical and statistical methodological nature.
Collapse
Affiliation(s)
- Marta Campi
- CERIAH, Institut de L’Audition, Institut Pasteur, Paris, France
| | - Gareth W. Peters
- Department of Statistics & Applied Probability, University of California, Santa Barbara (UCSB), Santa Barbara, California, United States of America
| | - Dorota Toczydlowska
- School of Mathematics and Physical Science, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
8
|
Faragó P, Ștefănigă SA, Cordoș CG, Mihăilă LI, Hintea S, Peștean AS, Beyer M, Perju-Dumbravă L, Ileșan RR. CNN-Based Identification of Parkinson's Disease from Continuous Speech in Noisy Environments. Bioengineering (Basel) 2023; 10:bioengineering10050531. [PMID: 37237601 DOI: 10.3390/bioengineering10050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder caused by dopaminergic neuron degeneration. Parkinsonian speech impairment is one of the earliest presentations of the disease and, along with tremor, is suitable for pre-diagnosis. It is defined by hypokinetic dysarthria and accounts for respiratory, phonatory, articulatory, and prosodic manifestations. The topic of this article targets artificial-intelligence-based identification of Parkinson's disease from continuous speech recorded in a noisy environment. The novelty of this work is twofold. First, the proposed assessment workflow performed speech analysis on samples of continuous speech. Second, we analyzed and quantified Wiener filter applicability for speech denoising in the context of Parkinsonian speech identification. We argue that the Parkinsonian features of loudness, intonation, phonation, prosody, and articulation are contained in the speech, speech energy, and Mel spectrograms. Thus, the proposed workflow follows a feature-based speech assessment to determine the feature variation ranges, followed by speech classification using convolutional neural networks. We report the best classification accuracies of 96% on speech energy, 93% on speech, and 92% on Mel spectrograms. We conclude that the Wiener filter improves both feature-based analysis and convolutional-neural-network-based classification performances.
Collapse
Affiliation(s)
- Paul Faragó
- Bases of Electronics Department, Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Sebastian-Aurelian Ștefănigă
- Department of Computer Science, Faculty of Mathematics and Computer Science, West University of Timisoara, 300223 Timisoara, Romania
| | - Claudia-Georgiana Cordoș
- Bases of Electronics Department, Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Laura-Ioana Mihăilă
- Bases of Electronics Department, Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Sorin Hintea
- Bases of Electronics Department, Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Ana-Sorina Peștean
- Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Michel Beyer
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland
| | - Lăcrămioara Perju-Dumbravă
- Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Robert Radu Ileșan
- Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
9
|
Alfalahi H, Dias SB, Khandoker AH, Chaudhuri KR, Hadjileontiadis LJ. A scoping review of neurodegenerative manifestations in explainable digital phenotyping. NPJ Parkinsons Dis 2023; 9:49. [PMID: 36997573 PMCID: PMC10063633 DOI: 10.1038/s41531-023-00494-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Neurologists nowadays no longer view neurodegenerative diseases, like Parkinson's and Alzheimer's disease, as single entities, but rather as a spectrum of multifaceted symptoms with heterogeneous progression courses and treatment responses. The definition of the naturalistic behavioral repertoire of early neurodegenerative manifestations is still elusive, impeding early diagnosis and intervention. Central to this view is the role of artificial intelligence (AI) in reinforcing the depth of phenotypic information, thereby supporting the paradigm shift to precision medicine and personalized healthcare. This suggestion advocates the definition of disease subtypes in a new biomarker-supported nosology framework, yet without empirical consensus on standardization, reliability and interpretability. Although the well-defined neurodegenerative processes, linked to a triad of motor and non-motor preclinical symptoms, are detected by clinical intuition, we undertake an unbiased data-driven approach to identify different patterns of neuropathology distribution based on the naturalistic behavior data inherent to populations in-the-wild. We appraise the role of remote technologies in the definition of digital phenotyping specific to brain-, body- and social-level neurodegenerative subtle symptoms, emphasizing inter- and intra-patient variability powered by deep learning. As such, the present review endeavors to exploit digital technologies and AI to create disease-specific phenotypic explanations, facilitating the understanding of neurodegenerative diseases as "bio-psycho-social" conditions. Not only does this translational effort within explainable digital phenotyping foster the understanding of disease-induced traits, but it also enhances diagnostic and, eventually, treatment personalization.
Collapse
Affiliation(s)
- Hessa Alfalahi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| | - Sofia B Dias
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- CIPER, Faculdade de Motricidade Humana, University of Lisbon, Lisbon, Portugal
| | - Ahsan H Khandoker
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kallol Ray Chaudhuri
- Parkinson Foundation, International Center of Excellence, King's College London, Denmark Hills, London, UK
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Zhang J, Wu J, Qiu Y, Song A, Li W, Li X, Liu Y. Intelligent speech technologies for transcription, disease diagnosis, and medical equipment interactive control in smart hospitals: A review. Comput Biol Med 2023; 153:106517. [PMID: 36623438 PMCID: PMC9814440 DOI: 10.1016/j.compbiomed.2022.106517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
The growing and aging of the world population have driven the shortage of medical resources in recent years, especially during the COVID-19 pandemic. Fortunately, the rapid development of robotics and artificial intelligence technologies help to adapt to the challenges in the healthcare field. Among them, intelligent speech technology (IST) has served doctors and patients to improve the efficiency of medical behavior and alleviate the medical burden. However, problems like noise interference in complex medical scenarios and pronunciation differences between patients and healthy people hamper the broad application of IST in hospitals. In recent years, technologies such as machine learning have developed rapidly in intelligent speech recognition, which is expected to solve these problems. This paper first introduces IST's procedure and system architecture and analyzes its application in medical scenarios. Secondly, we review existing IST applications in smart hospitals in detail, including electronic medical documentation, disease diagnosis and evaluation, and human-medical equipment interaction. In addition, we elaborate on an application case of IST in the early recognition, diagnosis, rehabilitation training, evaluation, and daily care of stroke patients. Finally, we discuss IST's limitations, challenges, and future directions in the medical field. Furthermore, we propose a novel medical voice analysis system architecture that employs active hardware, active software, and human-computer interaction to realize intelligent and evolvable speech recognition. This comprehensive review and the proposed architecture offer directions for future studies on IST and its applications in smart hospitals.
Collapse
Affiliation(s)
- Jun Zhang
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China,Corresponding author
| | - Jingyue Wu
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Yiyi Qiu
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Aiguo Song
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yecheng Liu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
11
|
Kouba T, Illner V, Rusz J. Study protocol for using a smartphone application to investigate speech biomarkers of Parkinson's disease and other synucleinopathies: SMARTSPEECH. BMJ Open 2022; 12:e059871. [PMID: 35772829 PMCID: PMC9247696 DOI: 10.1136/bmjopen-2021-059871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Early identification of Parkinson's disease (PD) in its prodromal stage has fundamental implications for the future development of neuroprotective therapies. However, no sufficiently accurate biomarkers of prodromal PD are currently available to facilitate early identification. The vocal assessment of patients with isolated rapid eye movement sleep behaviour disorder (iRBD) and PD appears to have intriguing potential as a diagnostic and progressive biomarker of PD and related synucleinopathies. METHODS AND ANALYSIS Speech patterns in the spontaneous speech of iRBD, early PD and control participants' voice calls will be collected from data acquired via a developed smartphone application over a period of 2 years. A significant increase in several aspects of PD-related speech disorders is expected, and is anticipated to reflect the underlying neurodegeneration processes. ETHICS AND DISSEMINATION The study has been approved by the Ethics Committee of the General University Hospital in Prague, Czech Republic and all the participants will provide written, informed consent prior to their inclusion in the research. The application satisfies the General Data Protection Regulation law requirements of the European Union. The study findings will be published in peer-reviewed journals and presented at international scientific conferences.
Collapse
Affiliation(s)
- Tomáš Kouba
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Vojtěch Illner
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Ryu J, Torres EB. Motor Signatures in Digitized Cognitive and Memory Tests Enhances Characterization of Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:4434. [PMID: 35746215 PMCID: PMC9231034 DOI: 10.3390/s22124434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Although interest in using wearable sensors to characterize movement disorders is growing, there is a lack of methodology for developing clinically interpretable biomarkers. Such digital biomarkers would provide a more objective diagnosis, capturing finer degrees of motor deficits, while retaining the information of traditional clinical tests. We aim at digitizing traditional tests of cognitive and memory performance to derive motor biometrics of pen-strokes and voice, thereby complementing clinical tests with objective criteria, while enhancing the overall characterization of Parkinson's disease (PD). 35 participants including patients with PD, healthy young and age-matched controls performed a series of drawing and memory tasks, while their pen movement and voice were digitized. We examined the moment-to-moment variability of time series reflecting the pen speed and voice amplitude. The stochastic signatures of the fluctuations in pen drawing speed and voice amplitude of patients with PD show a higher signal-to-noise ratio compared to those of neurotypical controls. It appears that contact motions of the pen strokes on a tablet evoke sensory feedback for more immediate and predictable control in PD, while voice amplitude loses its neurotypical richness. We offer new standardized data types and analytics to discover the hidden motor aspects within the cognitive and memory clinical assays.
Collapse
Affiliation(s)
- Jihye Ryu
- Department of Psychology, Rutgers University, New Brunswick, NJ 08854, USA;
| | - Elizabeth B. Torres
- Rutgers University Center for Cognitive Science, Computational Biomedicine Imaging and Modeling Center at Computer Science Department, Psychology Department, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|