1
|
Zhao Q, Geng S, Wang B, Sun Y, Nie W, Bai B, Yu C, Zhang F, Tang G, Zhang D, Zhou Y, Liu J, Hong S. Deep Learning in Heart Sound Analysis: From Techniques to Clinical Applications. HEALTH DATA SCIENCE 2024; 4:0182. [PMID: 39387057 PMCID: PMC11461928 DOI: 10.34133/hds.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
Importance: Heart sound auscultation is a routinely used physical examination in clinical practice to identify potential cardiac abnormalities. However, accurate interpretation of heart sounds requires specialized training and experience, which limits its generalizability. Deep learning, a subset of machine learning, involves training artificial neural networks to learn from large datasets and perform complex tasks with intricate patterns. Over the past decade, deep learning has been successfully applied to heart sound analysis, achieving remarkable results and accumulating substantial heart sound data for model training. Although several reviews have summarized deep learning algorithms for heart sound analysis, there is a lack of comprehensive summaries regarding the available heart sound data and the clinical applications. Highlights: This review will compile the commonly used heart sound datasets, introduce the fundamentals and state-of-the-art techniques in heart sound analysis and deep learning, and summarize the current applications of deep learning for heart sound analysis, along with their limitations and areas for future improvement. Conclusions: The integration of deep learning into heart sound analysis represents a significant advancement in clinical practice. The growing availability of heart sound datasets and the continuous development of deep learning techniques contribute to the improvement and broader clinical adoption of these models. However, ongoing research is needed to address existing challenges and refine these technologies for broader clinical use.
Collapse
Affiliation(s)
- Qinghao Zhao
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | | | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology,
Peking University Cancer Hospital and Institute, Beijing, China
| | - Yutong Sun
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Wenchang Nie
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Baochen Bai
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Chao Yu
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Feng Zhang
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Gongzheng Tang
- National Institute of Health Data Science,
Peking University, Beijing, China
- Institute of Medical Technology,
Health Science Center of Peking University, Beijing, China
| | | | - Yuxi Zhou
- Department of Computer Science,
Tianjin University of Technology, Tianjin, China
- DCST, BNRist, RIIT, Institute of Internet Industry,
Tsinghua University, Beijing, China
| | - Jian Liu
- Department of Cardiology,
Peking University People’s Hospital, Beijing, China
| | - Shenda Hong
- National Institute of Health Data Science,
Peking University, Beijing, China
- Institute of Medical Technology,
Health Science Center of Peking University, Beijing, China
| |
Collapse
|
2
|
Rossi M, Alessandrelli G, Dombrovschi A, Bovio D, Salito C, Mainardi L, Cerveri P. Identification of Characteristic Points in Multivariate Physiological Signals by Sensor Fusion and Multi-Task Deep Networks. SENSORS 2022; 22:s22072684. [PMID: 35408297 PMCID: PMC9003131 DOI: 10.3390/s22072684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
Identification of characteristic points in physiological signals, such as the peak of the R wave in the electrocardiogram and the peak of the systolic wave of the photopletismogram, is a fundamental step for the quantification of clinical parameters, such as the pulse transit time. In this work, we presented a novel neural architecture, called eMTUnet, to automate point identification in multivariate signals acquired with a chest-worn device. The eMTUnet consists of a single deep network capable of performing three tasks simultaneously: (i) localization in time of characteristic points (labeling task), (ii) evaluation of the quality of signals (classification task); (iii) estimation of the reliability of classification (reliability task). Preliminary results in overnight monitoring showcased the ability to detect characteristic points in the four signals with a recall index of about 1.00, 0.90, 0.90, and 0.80, respectively. The accuracy of the signal quality classification was about 0.90, on average over four different classes. The average confidence of the correctly classified signals, against the misclassifications, was 0.93 vs. 0.52, proving the worthiness of the confidence index, which may better qualify the point identification. From the achieved outcomes, we point out that high-quality segmentation and classification are both ensured, which brings the use of a multi-modal framework, composed of wearable sensors and artificial intelligence, incrementally closer to clinical translation.
Collapse
Affiliation(s)
- Matteo Rossi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (G.A.); (A.D.); (L.M.)
- Correspondence: (M.R.); (P.C.)
| | - Giulia Alessandrelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (G.A.); (A.D.); (L.M.)
| | - Andra Dombrovschi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (G.A.); (A.D.); (L.M.)
| | - Dario Bovio
- Biocubica SRL, 20154 Milan, Italy; (D.B.); (C.S.)
| | | | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (G.A.); (A.D.); (L.M.)
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (G.A.); (A.D.); (L.M.)
- Correspondence: (M.R.); (P.C.)
| |
Collapse
|