1
|
Meng F, Jin S, Liu N. Cardiac selectivity in pulsed field ablation. Curr Opin Cardiol 2025; 40:37-41. [PMID: 39611738 PMCID: PMC11623377 DOI: 10.1097/hco.0000000000001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
PURPOSE OF REVIEW This review examines the selective cardiac injury induced by pulsed electric fields during atrial fibrillation ablation. It consolidates findings from both preclinical and clinical studies on cardiac selectivity and explores the potential mechanisms behind this selectivity. RECENT FINDINGS Preclinical studies indicate that pulsed electric fields cause significantly more myocardial injury compared with other tissues. Clinical studies have similarly shown that complication rates for pulsed field ablation are notably lower than those for radiofrequency and cryoballoon ablation. SUMMARY Pulsed field ablation demonstrates a notable selectivity for myocardial injury, likely because of the unique functional and metabolic characteristics of cardiomyocytes. This review delves into the underlying principles of cardiac selectivity and proposes future directions for improving this selectivity. It is important to note that while pulsed field ablation shows promise, its cardiac selectivity is not absolute, as some complications still occur, necessitating further research.
Collapse
Affiliation(s)
- Fanchao Meng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Shuqi Jin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| |
Collapse
|
2
|
Fesmire CC, Petrella RA, Williamson RH, Derks K, Ruff J, McParland T, O'Neil E, Fogle C, Prange T, Sano MB. Treatment of Spontaneous Tumors With Algorithmically Controlled Electroporation. IEEE Trans Biomed Eng 2024; 71:2814-2822. [PMID: 38683704 PMCID: PMC11447859 DOI: 10.1109/tbme.2024.3394391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To study the safety and efficacy of algorithmically controlled electroporation (ACE) against spontaneous equine melanoma. METHODS A custom temperature sensing coaxial electrode was paired with a high voltage pulse generation system with integrated temperature feedback controls. Computational modeling and ex vivo studies were conducted to evaluate the system's ability to achieve and maintain target temperatures. Twenty-five equine melanoma tumors were treated with a 2000 V protocol consisting of a 2-5-2 waveform, 45 °C temperature set point, and integrated energized times of 0.005 s, 0.01 s, or 0.02 s (2500x, 5000x, and 10000x 2 μs pulses, respectively). Patients returned 20-50 days post treatment to determine the efficacy of the treatment. RESULTS ACE temperature control algorithms successfully achieved and maintained target temperatures in a diverse population of spontaneous tumors with significant variation in tissue impedance. All treatments were completed successfully without and without adverse events. Complete response rates greater than 93% were achieved in all treatment groups. CONCLUSION ACE is a safe and effective treatment for spontaneous equine melanoma. The temperature control algorithm enabled rapid delivery of electroporation treatments without prior knowledge of tissue electrical or thermal properties and could adjust to real time changes in tissue properties. SIGNIFICANCE Real time temperature control in electroporation procedures enables treatments near critical structures where thermal damage is contraindicated. Unlike standard approaches, ACE protocols do not require extensive pretreatment planning or knowledge of tissue properties to determine an optimal energy delivery rate and they can account for changes in tissue state (e.g., perfusion) in real time to simultaneously minimize treatment time and potential for thermal damage.
Collapse
|
3
|
Malyško-Ptašinskė V, Nemeikaitė-Čėnienė A, Radzevičiūtė-Valčiukė E, Mickevičiūtė E, Malakauskaitė P, Lekešytė B, Novickij V. Threshold Interphase Delay for Bipolar Pulses to Prevent Cancellation Phenomenon during Electrochemotherapy. Int J Mol Sci 2024; 25:8774. [PMID: 39201461 PMCID: PMC11354671 DOI: 10.3390/ijms25168774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Electroporation-based procedures employing nanosecond bipolar pulses are commonly linked to an undesirable phenomenon known as the cancelation effect. The cancellation effect arises when the second pulse partially or completely neutralizes the effects of the first pulse, simultaneously diminishing cells' plasma membrane permeabilization and the overall efficiency of the procedure. Introducing a temporal gap between the positive and negative phases of the bipolar pulses during electroporation procedures may help to overcome the cancellation phenomenon; however, the exact thresholds are not yet known. Therefore, in this work, we have tested the influence of different interphase delay values (from 0 ms to 95 ms) using symmetric bipolar nanoseconds (300 and 500 ns) on cell permeabilization using 10 Hz, 100 Hz, and 1 kHz protocols. As a model mouse hepatoma, the MH-22a cell line was employed. Additionally, we conducted in vitro electrochemotherapy with cisplatin, employing reduced interphase delay values (0 ms and 0.1 ms) at 10 Hz. Cell plasma membrane permeabilization and viability dependence on a variety of bipolar pulsed electric field protocols were characterized. It was shown that it is possible to minimize bipolar cancellation, enabling treatment efficiency comparable to monophasic pulses with identical parameters. At the same time, it was highlighted that bipolar cancellation has a significant influence on permeabilization, while the effects on the outcome of electrochemotherapy are minimal.
Collapse
Affiliation(s)
- Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
| | - Aušra Nemeikaitė-Čėnienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Eglė Mickevičiūtė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Paulina Malakauskaitė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Barbora Lekešytė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| |
Collapse
|
4
|
Fesmire CC, Peal B, Ruff J, Moyer E, McParland TJ, Derks K, O’Neil E, Emke C, Johnson B, Ghosh S, Petrella RA, DeWitt MR, Prange T, Fogle C, Sano MB. Investigation of integrated time nanosecond pulse irreversible electroporation against spontaneous equine melanoma. Front Vet Sci 2024; 11:1232650. [PMID: 38352036 PMCID: PMC10861690 DOI: 10.3389/fvets.2024.1232650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Integrated time nanosecond pulse irreversible electroporation (INSPIRE) is a novel tumor ablation modality that employs high voltage, alternating polarity waveforms to induce cell death in a well-defined volume while sparing the underlying tissue. This study aimed to demonstrate the in vivo efficacy of INSPIRE against spontaneous melanoma in standing, awake horses. Methods A custom applicator and a pulse generation system were utilized in a pilot study to treat horses presenting with spontaneous melanoma. INSPIRE treatments were administered to 32 tumors across 6 horses and an additional 13 tumors were followed to act as untreated controls. Tumors were tracked over a 43-85 day period following a single INSPIRE treatment. Pulse widths of 500ns and 2000ns with voltages between 1000 V and 2000 V were investigated to determine the effect of these variables on treatment outcomes. Results Treatments administered at the lowest voltage (1000 V) reduced tumor volumes by 11 to 15%. Higher voltage (2000 V) treatments reduced tumor volumes by 84 to 88% and eliminated 33% and 80% of tumors when 500 ns and 2000 ns pulses were administered, respectively. Discussion Promising results were achieved without the use of chemotherapeutics, the use of general anesthesia, or the need for surgical resection in regions which are challenging to keep sterile. This novel therapeutic approach has the potential to expand the role of pulsed electric fields in veterinary patients, especially when general anesthesia is contraindicated, and warrants future studies to demonstrate the efficacy of INSPIRE as a solid tumor treatment.
Collapse
Affiliation(s)
- Chris C. Fesmire
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Bridgette Peal
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Jennifer Ruff
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Elizabeth Moyer
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Thomas J. McParland
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Kobi Derks
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Erin O’Neil
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Carrie Emke
- Clinical Studies Core, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Brianna Johnson
- Clinical Studies Core, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Shatorupa Ghosh
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Ross A. Petrella
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Matthew R. DeWitt
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Timo Prange
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Callie Fogle
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Michael B. Sano
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
- Department of Molecular Biomedical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| |
Collapse
|