1
|
The identifiability of gene regulatory networks: the role of observation data. J Biol Phys 2022; 48:93-110. [PMID: 34988715 PMCID: PMC8866611 DOI: 10.1007/s10867-021-09595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/07/2021] [Indexed: 10/19/2022] Open
Abstract
Identifying gene regulatory networks (GRN) from observation data is significant to understand biological systems. Conventional studies focus on improving the performance of identification algorithms. However, besides algorithm performance, the GRN identification is strongly depended on the observation data. In this work, for three GRN S-system models, three observation data collection schemes are used to perform the identifiability test procedure. A modified genetic algorithm-particle swarm optimization algorithm is proposed to implement this task, including the multi-level mutation operation and velocity limitation strategy. The results show that, in scheme 1 (starting from a special initial condition), the GRN systems are of identifiability using the sufficient transient observation data. In scheme 2, the observation data are short of sufficient system dynamic. The GRN systems are not of identifiability even though the state trajectories can be reproduced. As a special case of scheme 2, i.e., the steady-state observation data, the equilibrium point analysis is given to explain why it is infeasible for GRN identification. In schemes 1 and 2, the observation data are obtained from zero-input GRN systems, which will evolve to the steady state at last. The sufficient transient observation data in scheme 1 can be obtained by changing the experimental conditions. Additionally, the valid observation data can be also obtained by means of adding impulse excitation signal into GRN systems (scheme 3). Consequently, the GRN systems are identifiable using scheme 3. Owing to its universality and simplicity, these results provide a guide for biologists to collect valid observation data for identifying GRNs and to further understand GRN dynamics.
Collapse
|
2
|
Chen X, Li M, Zheng R, Wu FX, Wang J. D3GRN: a data driven dynamic network construction method to infer gene regulatory networks. BMC Genomics 2019; 20:929. [PMID: 31881937 PMCID: PMC6933629 DOI: 10.1186/s12864-019-6298-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND To infer gene regulatory networks (GRNs) from gene-expression data is still a fundamental and challenging problem in systems biology. Several existing algorithms formulate GRNs inference as a regression problem and obtain the network with an ensemble strategy. Recent studies on data driven dynamic network construction provide us a new perspective to solve the regression problem. RESULTS In this study, we propose a data driven dynamic network construction method to infer gene regulatory network (D3GRN), which transforms the regulatory relationship of each target gene into functional decomposition problem and solves each sub problem by using the Algorithm for Revealing Network Interactions (ARNI). To remedy the limitation of ARNI in constructing networks solely from the unit level, a bootstrapping and area based scoring method is taken to infer the final network. On DREAM4 and DREAM5 benchmark datasets, D3GRN performs competitively with the state-of-the-art algorithms in terms of AUPR. CONCLUSIONS We have proposed a novel data driven dynamic network construction method by combining ARNI with bootstrapping and area based scoring strategy. The proposed method performs well on the benchmark datasets, contributing as a competitive method to infer gene regulatory networks in a new perspective.
Collapse
Affiliation(s)
- Xiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Ruiqing Zheng
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Fang-Xiang Wu
- Department of Mechanical Engineering and Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
3
|
A latent space-based estimation of distribution algorithm for large-scale global optimization. Soft comput 2019. [DOI: 10.1007/s00500-018-3390-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Loskot P, Atitey K, Mihaylova L. Comprehensive Review of Models and Methods for Inferences in Bio-Chemical Reaction Networks. Front Genet 2019; 10:549. [PMID: 31258548 PMCID: PMC6588029 DOI: 10.3389/fgene.2019.00549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/24/2019] [Indexed: 01/30/2023] Open
Abstract
The key processes in biological and chemical systems are described by networks of chemical reactions. From molecular biology to biotechnology applications, computational models of reaction networks are used extensively to elucidate their non-linear dynamics. The model dynamics are crucially dependent on the parameter values which are often estimated from observations. Over the past decade, the interest in parameter and state estimation in models of (bio-) chemical reaction networks (BRNs) grew considerably. The related inference problems are also encountered in many other tasks including model calibration, discrimination, identifiability, and checking, and optimum experiment design, sensitivity analysis, and bifurcation analysis. The aim of this review paper is to examine the developments in literature to understand what BRN models are commonly used, and for what inference tasks and inference methods. The initial collection of about 700 documents concerning estimation problems in BRNs excluding books and textbooks in computational biology and chemistry were screened to select over 270 research papers and 20 graduate research theses. The paper selection was facilitated by text mining scripts to automate the search for relevant keywords and terms. The outcomes are presented in tables revealing the levels of interest in different inference tasks and methods for given models in the literature as well as the research trends are uncovered. Our findings indicate that many combinations of models, tasks and methods are still relatively unexplored, and there are many new research opportunities to explore combinations that have not been considered-perhaps for good reasons. The most common models of BRNs in literature involve differential equations, Markov processes, mass action kinetics, and state space representations whereas the most common tasks are the parameter inference and model identification. The most common methods in literature are Bayesian analysis, Monte Carlo sampling strategies, and model fitting to data using evolutionary algorithms. The new research problems which cannot be directly deduced from the text mining data are also discussed.
Collapse
Affiliation(s)
- Pavel Loskot
- College of Engineering, Swansea University, Swansea, United Kingdom
| | - Komlan Atitey
- College of Engineering, Swansea University, Swansea, United Kingdom
| | - Lyudmila Mihaylova
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Niu B, Liu J, Wu T, Chu X, Wang Z, Liu Y. Coevolutionary Structure-Redesigned-Based Bacterial Foraging Optimization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1865-1876. [PMID: 28858809 DOI: 10.1109/tcbb.2017.2742946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents a Coevolutionary Structure-Redesigned-Based Bacteria Foraging Optimization (CSRBFO) based on the natural phenomenon that most living creatures tend to cooperate with each other so as to fulfill tasks more effectively. Aiming at lowering computational complexity while maintaining the critical search capability of standard bacterial foraging optimization (BFO), we employ a general loop to replace the nested loop and eliminate the reproduction step of BFO. Hence, the proposed CSRBFO only consists of two main steps: (1) chemotaxis and (2) elimination & dispersal. A coevolutionary strategy by which all bacteria can learn from each other and search for optima cooperatively is incorporated into the chemotactic step to accelerate convergence and facilitate accurate search. In the elimination & dispersal step, the three-stage evolutionary strategy with different learning methods for maintaining diversity is studied. An evaluation of the convergence status is then added to determine whether bacteria should move on to the next stage or not. The combination of coevolutionary strategy and convergence status evaluation is expected to balance exploration and exploitation. Experimental results comparing seven well-known heuristic algorithms on 24 benchmark functions demonstrate that the proposed CSRBFO outperforms the comparison algorithms significantly in most of the cases.
Collapse
|
6
|
Inference of Biochemical S-Systems via Mixed-Variable Multiobjective Evolutionary Optimization. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:3020326. [PMID: 28607576 PMCID: PMC5457779 DOI: 10.1155/2017/3020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/27/2017] [Indexed: 12/18/2022]
Abstract
Inference of the biochemical systems (BSs) via experimental data is important for understanding how biochemical components in vivo interact with each other. However, it is not a trivial task because BSs usually function with complex and nonlinear dynamics. As a popular ordinary equation (ODE) model, the S-System describes the dynamical properties of BSs by incorporating the power rule of biochemical reactions but behaves as a challenge because it has a lot of parameters to be confirmed. This work is dedicated to proposing a general method for inference of S-Systems by experimental data, using a biobjective optimization (BOO) model and a specially mixed-variable multiobjective evolutionary algorithm (mv-MOEA). Regarding that BSs are sparse in common sense, we introduce binary variables indicating network connections to eliminate the difficulty of threshold presetting and take data fitting error and the L0-norm as two objectives to be minimized in the BOO model. Then, a selection procedure that automatically runs tradeoff between two objectives is employed to choose final inference results from the obtained nondominated solutions of the mv-MOEA. Inference results of the investigated networks demonstrate that our method can identify their dynamical properties well, although the automatic selection procedure sometimes ignores some weak connections in BSs.
Collapse
|
7
|
Mandal S, Saha G, Pal RK. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm. J Bioinform Comput Biol 2017; 15:1750016. [PMID: 28659000 DOI: 10.1142/s0219720017500160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.
Collapse
Affiliation(s)
- Sudip Mandal
- * Electronics and Communication Engineering Department, Global Institute of Management and Technology, Krishnanagar, West Bengal 741102, India
| | - Goutam Saha
- † Information Technology Department, North Eastern Hill University, Umshing, Mawkynroh, Shillong 793 022, Meghalaya, India
| | - Rajat Kumar Pal
- ‡ Department of Computer Science and Engineering, University of Calcutta, Acharya Prafulla Chandra Siksha Prangan, JD-2, Sector III, Saltlake, Kolkata 700 098, West Bengal, India
| |
Collapse
|
8
|
Mandal S, Khan A, Saha G, Pal RK. Reverse engineering of gene regulatory networks based on S-systems and Bat algorithm. J Bioinform Comput Biol 2016; 14:1650010. [DOI: 10.1142/s0219720016500104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The correct inference of gene regulatory networks for the understanding of the intricacies of the complex biological regulations remains an intriguing task for researchers. With the availability of large dimensional microarray data, relationships among thousands of genes can be simultaneously extracted. Among the prevalent models of reverse engineering genetic networks, S-system is considered to be an efficient mathematical tool. In this paper, Bat algorithm, based on the echolocation of bats, has been used to optimize the S-system model parameters. A decoupled S-system has been implemented to reduce the complexity of the algorithm. Initially, the proposed method has been successfully tested on an artificial network with and without the presence of noise. Based on the fact that a real-life genetic network is sparsely connected, a novel Accumulative Cardinality based decoupled S-system has been proposed. The cardinality has been varied from zero up to a maximum value, and this model has been implemented for the reconstruction of the DNA SOS repair network of Escherichia coli. The obtained results have shown significant improvements in the detection of a greater number of true regulations, and in the minimization of false detections compared to other existing methods.
Collapse
Affiliation(s)
- Sudip Mandal
- Electronics and Communication Engineering Department, Global Institute of Management and Technology Krishnanagar, West Bengal 741102, India
| | - Abhinandan Khan
- Computer Science and Engineering Department, University of Calcutta, Acharya Prafulla Chandra Siksha Prangan, JD-2, Sector – III, Salt Lake Kolkata 700098, India
| | - Goutam Saha
- Information Technology Department, North Eastern Hill University, Umshing, Mawkynroh, Shillong, Meghalaya 793022, India
| | - Rajat Kumar Pal
- Computer Science and Engineering Department, University of Calcutta, Acharya Prafulla Chandra Siksha Prangan, JD-2, Sector – III, Salt Lake Kolkata 700098, India
| |
Collapse
|
9
|
Liu LZ, Wu FX, Zhang WJ. Properties of sparse penalties on inferring gene regulatory networks from time-course gene expression data. IET Syst Biol 2015; 9:16-24. [PMID: 25569860 DOI: 10.1049/iet-syb.2013.0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genes regulate each other and form a gene regulatory network (GRN) to realise biological functions. Elucidating GRN from experimental data remains a challenging problem in systems biology. Numerous techniques have been developed and sparse linear regression methods become a promising approach to infer accurate GRNs. However, most linear methods are either based on steady-state gene expression data or their statistical properties are not analysed. Here, two sparse penalties, adaptive least absolute shrinkage and selection operator and smoothly clipped absolute deviation, are proposed to infer GRNs from time-course gene expression data based on an auto-regressive model and their Oracle properties are proved under mild conditions. The effectiveness of those methods is demonstrated by applications to in silico and real biological data.
Collapse
Affiliation(s)
- Li-Zhi Liu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Fang-Xiang Wu
- Department of Mechanical Engineering, Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Wen-Jun Zhang
- Department of Mechanical Engineering, Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Raja Chowdhury A, Chetty M. Network decomposition based large-scale reverse engineering of gene regulatory network. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Mahdavi S, Shiri ME, Rahnamayan S. Metaheuristics in large-scale global continues optimization: A survey. Inf Sci (N Y) 2015. [DOI: 10.1016/j.ins.2014.10.042] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Liu LZ, Wu FX, Zhang WJ. Properties of sparse penalties on inferring gene regulatory networks from time-course gene expression data. IET Syst Biol 2015. [PMID: 25569860 DOI: 10.1049/iet‐syb.2013.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genes regulate each other and form a gene regulatory network (GRN) to realise biological functions. Elucidating GRN from experimental data remains a challenging problem in systems biology. Numerous techniques have been developed and sparse linear regression methods become a promising approach to infer accurate GRNs. However, most linear methods are either based on steady-state gene expression data or their statistical properties are not analysed. Here, two sparse penalties, adaptive least absolute shrinkage and selection operator and smoothly clipped absolute deviation, are proposed to infer GRNs from time-course gene expression data based on an auto-regressive model and their Oracle properties are proved under mild conditions. The effectiveness of those methods is demonstrated by applications to in silico and real biological data.
Collapse
Affiliation(s)
- Li-Zhi Liu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Fang-Xiang Wu
- Department of Mechanical Engineering, Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Wen-Jun Zhang
- Department of Mechanical Engineering, Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Wu SJ, Wu CT. Seeding-inspired chemotaxis genetic algorithm for the inference of biological systems. Comput Biol Chem 2014; 53PB:292-307. [DOI: 10.1016/j.compbiolchem.2014.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022]
|
14
|
Liu LZ, Wu FX, Zhang WJ. A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 3:S1. [PMID: 25350697 PMCID: PMC4243122 DOI: 10.1186/1752-0509-8-s3-s1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND As an abstract mapping of the gene regulations in the cell, gene regulatory network is important to both biological research study and practical applications. The reverse engineering of gene regulatory networks from microarray gene expression data is a challenging research problem in systems biology. With the development of biological technologies, multiple time-course gene expression datasets might be collected for a specific gene network under different circumstances. The inference of a gene regulatory network can be improved by integrating these multiple datasets. It is also known that gene expression data may be contaminated with large errors or outliers, which may affect the inference results. RESULTS A novel method, Huber group LASSO, is proposed to infer the same underlying network topology from multiple time-course gene expression datasets as well as to take the robustness to large error or outliers into account. To solve the optimization problem involved in the proposed method, an efficient algorithm which combines the ideas of auxiliary function minimization and block descent is developed. A stability selection method is adapted to our method to find a network topology consisting of edges with scores. The proposed method is applied to both simulation datasets and real experimental datasets. It shows that Huber group LASSO outperforms the group LASSO in terms of both areas under receiver operating characteristic curves and areas under the precision-recall curves. CONCLUSIONS The convergence analysis of the algorithm theoretically shows that the sequence generated from the algorithm converges to the optimal solution of the problem. The simulation and real data examples demonstrate the effectiveness of the Huber group LASSO in integrating multiple time-course gene expression datasets and improving the resistance to large errors or outliers.
Collapse
|
15
|
|
16
|
PSO based PI controller design for a solar charger system. ScientificWorldJournal 2013; 2013:815280. [PMID: 23766713 PMCID: PMC3666245 DOI: 10.1155/2013/815280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 04/11/2013] [Indexed: 11/17/2022] Open
Abstract
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).
Collapse
|
17
|
Tang Y, Gao H, Kurths J. Multiobjective identification of controlling areas in neuronal networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:708-720. [PMID: 24091403 DOI: 10.1109/tcbb.2013.72] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, we investigate the multiobjective identification of controlling areas in the neuronal network of a cat's brain by considering two measures of controllability simultaneously. By utilizing nondominated sorting mechanisms and composite differential evolution (CoDE), a reference-point-based nondominated sorting composite differential evolution (RP-NSCDE) is developed to tackle the multiobjective identification of controlling areas in the neuronal network. The proposed RP-NSCDE shows its promising performance in terms of accuracy and convergence speed, in comparison to nondominated sorting genetic algorithms II. The proposed method is also compared with other representative statistical methods in the complex network theory, single objective, and constraint optimization methods to illustrate its effectiveness and reliability. It is shown that there exists a tradeoff between minimizing two objectives, and therefore pareto fronts (PFs) can be plotted. The developed approaches and findings can also be applied to coordination control of various kinds of real-world complex networks including biological networks and social networks, and so on.
Collapse
Affiliation(s)
- Yang Tang
- Humboldt University of Berlin, Berlin and Potsdam Institute for Climate Impact Research, Potsdam
| | | | | |
Collapse
|
18
|
Abstract
Biochemical systems theory (BST) is the foundation for a set of analytical andmodeling tools that facilitate the analysis of dynamic biological systems. This paper depicts major developments in BST up to the current state of the art in 2012. It discusses its rationale, describes the typical strategies and methods of designing, diagnosing, analyzing, and utilizing BST models, and reviews areas of application. The paper is intended as a guide for investigators entering the fascinating field of biological systems analysis and as a resource for practitioners and experts.
Collapse
|