1
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Identifying essential proteins from protein-protein interaction networks based on influence maximization. BMC Bioinformatics 2022; 23:339. [PMID: 35974329 PMCID: PMC9380286 DOI: 10.1186/s12859-022-04874-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Essential proteins are indispensable to the development and survival of cells. The identification of essential proteins not only is helpful for the understanding of the minimal requirements for cell survival, but also has practical significance in disease diagnosis, drug design and medical treatment. With the rapidly amassing of protein-protein interaction (PPI) data, computationally identifying essential proteins from protein-protein interaction networks (PINs) becomes more and more popular. Up to now, a number of various approaches for essential protein identification based on PINs have been developed. RESULTS In this paper, we propose a new and effective approach called iMEPP to identify essential proteins from PINs by fusing multiple types of biological data and applying the influence maximization mechanism to the PINs. Concretely, we first integrate PPI data, gene expression data and Gene Ontology to construct weighted PINs, to alleviate the impact of high false-positives in the raw PPI data. Then, we define the influence scores of nodes in PINs with both orthological data and PIN topological information. Finally, we develop an influence discount algorithm to identify essential proteins based on the influence maximization mechanism. CONCLUSIONS We applied our method to identifying essential proteins from saccharomyces cerevisiae PIN. Experiments show that our iMEPP method outperforms the existing methods, which validates its effectiveness and advantage.
Collapse
|
3
|
Sheng J, Xue J, Li P, Yi N. [A protein complex recognition method based on spatial-temporal graph convolution neural network]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1075-1081. [PMID: 35869773 DOI: 10.12122/j.issn.1673-4254.2022.07.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To propose a new method for mining complexes in dynamic protein network using spatiotemporal convolution neural network. METHODS The edge strength, node strength and edge existence probability are defined for modeling of the dynamic protein network. Based on the time series information and structure information on the graph, two convolution operators were designed using Hilbert-Huang transform, attention mechanism and residual connection technology to represent and learn the characteristics of the proteins in the network, and the dynamic protein network characteristic map was constructed. Finally, spectral clustering was used to identify the protein complexes. RESULTS The simulation results on several public biological datasets showed that the F value of the proposed algorithm exceeded 90% on DIP dataset and MIPS dataset. Compared with 4 other recognition algorithms (DPCMNE, GE-CFI, VGAE and NOCD), the proposed algorithm improved the recognition efficiency by 34.5%, 28.7%, 25.4% and 17.6%, respectively. CONCLUSION The application of deep learning technology can improve the efficiency in analysis of dynamic protein networks.
Collapse
Affiliation(s)
- J Sheng
- Clinical nursing teaching and Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China.,Department of ultrasound diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - J Xue
- Operation center, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - P Li
- School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, China
| | - N Yi
- School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
4
|
Panditrao G, Bhowmick R, Meena C, Sarkar RR. Emerging landscape of molecular interaction networks: Opportunities, challenges and prospects. J Biosci 2022. [PMID: 36210749 PMCID: PMC9018971 DOI: 10.1007/s12038-022-00253-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Network biology finds application in interpreting molecular interaction networks and providing insightful inferences using graph theoretical analysis of biological systems. The integration of computational bio-modelling approaches with different hybrid network-based techniques provides additional information about the behaviour of complex systems. With increasing advances in high-throughput technologies in biological research, attempts have been made to incorporate this information into network structures, which has led to a continuous update of network biology approaches over time. The newly minted centrality measures accommodate the details of omics data and regulatory network structure information. The unification of graph network properties with classical mathematical and computational modelling approaches and technologically advanced approaches like machine-learning- and artificial intelligence-based algorithms leverages the potential application of these techniques. These computational advances prove beneficial and serve various applications such as essential gene prediction, identification of drug–disease interaction and gene prioritization. Hence, in this review, we have provided a comprehensive overview of the emerging landscape of molecular interaction networks using graph theoretical approaches. With the aim to provide information on the wide range of applications of network biology approaches in understanding the interaction and regulation of genes, proteins, enzymes and metabolites at different molecular levels, we have reviewed the methods that utilize network topological properties, emerging hybrid network-based approaches and applications that integrate machine learning techniques to analyse molecular interaction networks. Further, we have discussed the applications of these approaches in biomedical research with a note on future prospects.
Collapse
Affiliation(s)
- Gauri Panditrao
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Rupa Bhowmick
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Chandrakala Meena
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
5
|
Jalali M, Tsotsalas M, Wöll C. MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:704. [PMID: 35215032 PMCID: PMC8880275 DOI: 10.3390/nano12040704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
The number of metal-organic frameworks (MOF) as well as the number of applications of this material are growing rapidly. With the number of characterized compounds exceeding 100,000, manual sorting becomes impossible. At the same time, the increasing computer power and established use of automated machine learning approaches makes data science tools available, that provide an overview of the MOF chemical space and support the selection of suitable MOFs for a desired application. Among the different data science tools, graph theory approaches, where data generated from numerous real-world applications is represented as a graph (network) of interconnected objects, has been widely used in a variety of scientific fields such as social sciences, health informatics, biological sciences, agricultural sciences and economics. We describe the application of a particular graph theory approach known as social network analysis to MOF materials and highlight the importance of community (group) detection and graph node centrality. In this first application of the social network analysis approach to MOF chemical space, we created MOFSocialNet. This social network is based on the geometrical descriptors of MOFs available in the CoRE-MOFs database. MOFSocialNet can discover communities with similar MOFs structures and identify the most representative MOFs within a given community. In addition, analysis of MOFSocialNet using social network analysis methods can predict MOF properties more accurately than conventional ML tools. The latter advantage is demonstrated for the prediction of gas storage properties, the most important property of these porous reticular networks.
Collapse
Affiliation(s)
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| |
Collapse
|
6
|
Zhu X, He X, Kuang L, Chen Z, Lancine C. A Novel Collaborative Filtering Model-Based Method for Identifying Essential Proteins. Front Genet 2021; 12:763153. [PMID: 34745230 PMCID: PMC8566338 DOI: 10.3389/fgene.2021.763153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Considering that traditional biological experiments are expensive and time consuming, it is important to develop effective computational models to infer potential essential proteins. In this manuscript, a novel collaborative filtering model-based method called CFMM was proposed, in which, an updated protein–domain interaction (PDI) network was constructed first by applying collaborative filtering algorithm on the original PDI network, and then, through integrating topological features of PDI networks with biological features of proteins, a calculative method was designed to infer potential essential proteins based on an improved PageRank algorithm. The novelties of CFMM lie in construction of an updated PDI network, application of the commodity-customer-based collaborative filtering algorithm, and introduction of the calculation method based on an improved PageRank algorithm, which ensured that CFMM can be applied to predict essential proteins without relying entirely on known protein–domain associations. Simulation results showed that CFMM can achieve reliable prediction accuracies of 92.16, 83.14, 71.37, 63.87, 55.84, and 52.43% in the top 1, 5, 10, 15, 20, and 25% predicted candidate key proteins based on the DIP database, which are remarkably higher than 14 competitive state-of-the-art predictive models as a whole, and in addition, CFMM can achieve satisfactory predictive performances based on different databases with various evaluation measurements, which further indicated that CFMM may be a useful tool for the identification of essential proteins in the future.
Collapse
Affiliation(s)
- Xianyou Zhu
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China.,Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang, China
| | - Xin He
- College of Computer, Xiangtan University, Xiangtan, China
| | - Linai Kuang
- College of Computer, Xiangtan University, Xiangtan, China
| | - Zhiping Chen
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China
| | - Camara Lancine
- The Social Sciences and Management University of Bamako, Bamako, Mali
| |
Collapse
|
7
|
Khatun MS, Shoombuatong W, Hasan MM, Kurata H. Evolution of Sequence-based Bioinformatics Tools for Protein-protein Interaction Prediction. Curr Genomics 2020; 21:454-463. [PMID: 33093807 PMCID: PMC7536797 DOI: 10.2174/1389202921999200625103936] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Protein-protein interactions (PPIs) are the physical connections between two or more proteins via electrostatic forces or hydrophobic effects. Identification of the PPIs is pivotal, which contributes to many biological processes including protein function, disease incidence, and therapy design. The experimental identification of PPIs via high-throughput technology is time-consuming and expensive. Bioinformatics approaches are expected to solve such restrictions. In this review, our main goal is to provide an inclusive view of the existing sequence-based computational prediction of PPIs. Initially, we briefly introduce the currently available PPI databases and then review the state-of-the-art bioinformatics approaches, working principles, and their performances. Finally, we discuss the caveats and future perspective of the next generation algorithms for the prediction of PPIs.
Collapse
Affiliation(s)
| | | | - Md. Mehedi Hasan
- Address correspondence to these authors at the Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Tel: +81-948-297-828; E-mail: and Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Tel: +81-948-297-828; E-mail:
| | - Hiroyuki Kurata
- Address correspondence to these authors at the Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Tel: +81-948-297-828; E-mail: and Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Tel: +81-948-297-828; E-mail:
| |
Collapse
|
8
|
Mohamed SK, Nounu A, Nováček V. Biological applications of knowledge graph embedding models. Brief Bioinform 2020; 22:1679-1693. [PMID: 32065227 DOI: 10.1093/bib/bbaa012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 01/04/2023] Open
Abstract
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph's inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug-target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.
Collapse
Affiliation(s)
| | - Aayah Nounu
- Insight Centre for Data Analytics, NUI Galway, Galway, Ireland
| | - Vít Nováček
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Lei X, Wang S, Wu F. Identification of Essential Proteins Based on Improved HITS Algorithm. Genes (Basel) 2019; 10:E177. [PMID: 30823614 PMCID: PMC6409685 DOI: 10.3390/genes10020177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 11/16/2022] Open
Abstract
Essential proteins are critical to the development and survival of cells. Identifying and analyzing essential proteins is vital to understand the molecular mechanisms of living cells and design new drugs. With the development of high-throughput technologies, many protein⁻protein interaction (PPI) data are available, which facilitates the studies of essential proteins at the network level. Up to now, although various computational methods have been proposed, the prediction precision still needs to be improved. In this paper, we propose a novel method by applying Hyperlink-Induced Topic Search (HITS) on weighted PPI networks to detect essential proteins, named HSEP. First, an original undirected PPI network is transformed into a bidirectional PPI network. Then, both biological information and network topological characteristics are taken into account to weighted PPI networks. Pieces of biological information include gene expression data, Gene Ontology (GO) annotation and subcellular localization. The edge clustering coefficient is represented as network topological characteristics to measure the closeness of two connected nodes. We conducted experiments on two species, namely Saccharomyces cerevisiae and Drosophila melanogaster, and the experimental results show that HSEP outperformed some state-of-the-art essential proteins detection techniques.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Siguo Wang
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Fangxiang Wu
- Department of Mechanical Engineering and Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|