1
|
Xuan P, Wang X, Cui H, Meng X, Nakaguchi T, Zhang T. Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction. IEEE J Biomed Health Inform 2024; 28:4306-4316. [PMID: 38709611 DOI: 10.1109/jbhi.2024.3397003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes. Firstly, for both the miRNA and disease nodes, node category-wise meta-paths were constructed to integrate the similarity and association connection relationships. Each target node has its specific neighbor nodes for each meta-path, and the neighbors of longer meta-paths constitute its higher-order neighbor topological structure. Secondly, we constructed a meta-path specific graph convolutional network module to integrate the features of higher-order neighbors and their topology, and then learned the semantic representations of nodes. Thirdly, for the entire miRNA-disease heterogeneous network, a global-aware graph convolutional autoencoder was built to learn the network-view feature representations of nodes. We also designed semantic-level and representation-level attentions to obtain informative semantic features and node representations. Finally, the strategy based on the parallel convolutional-deconvolutional neural networks were designed to enhance the local feature learning for a pair of miRNA and disease nodes. The experiment results showed that MDAP outperformed other state-of-the-art methods, and the ablation experiments demonstrated the effectiveness of MDAP's major innovations. MDAP's ability in discovering potential disease-related miRNAs was further analyzed by the case studies over three diseases.
Collapse
|
2
|
Liu Y, Yu Y, Zhao S. Dual Attention Mechanisms and Feature Fusion Networks Based Method for Predicting LncRNA-Disease Associations. Interdiscip Sci 2022; 14:358-371. [PMID: 35067893 DOI: 10.1007/s12539-021-00492-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
LncRNAs play a part in numerous momentous processes of biology such as disease diagnoses, preventions and treatments. The associations between various diseases and lncRNAs are one of the crucial approaches to learn the role and status of lncRNAs in human diseases. With the researches on lncRNA and diseases, multiple methods based on neural network have been employed to predict these associations. However, the deep and complicated characteristic representations of lncRNA-disease associations were failed to be extracted, and the discriminative contributions of the interactions, correlations, and similarities among miRNAs diseases, and lncRNAs for the correlation predictions were ignored. In this paper, based on the multibiology premise of lncRNAs, miRNAs, and diseases, a dual attention network was proposed to predict the model of lncRNA-disease associations for miRNAs, the disease characteristic matrix, and lncRNAs. Through two attention modules, we enable the model to learn the nonlinear, more complex and useful features of lncRNA, miRNA, and disease characteristic matrix. For the feature embedding matrix composed of lncRNA-disease, the connection between lncRNA-disease feature embedding matrix and lncRNA, miRNA, and disease characteristic matrix was enhanced through deconvolution and feature fusion layer. Compared with several latest methods, the method proposed in this paper can produce better performance. Researches on the cases of osteosarcoma, lung cancer, and gastric cancer have confirmed the effective recognition of potential lncRNA-disease associations.
Collapse
Affiliation(s)
- Yu Liu
- Dalian Key Lab of Digital Technology for National Culture, Dalian Minzu University, Dalian, 116600, China. .,Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Darul Ehsan, Malaysia.
| | - Yingying Yu
- Dalian Key Lab of Digital Technology for National Culture, Dalian Minzu University, Dalian, 116600, China
| | - Shimin Zhao
- Guangxi Vocational and Technical College, Nanning, 530000, Guangxi, China
| |
Collapse
|
3
|
Song J, Tian S, Yu L, Yang Q, Xing Y, Zhang C, Dai Q, Duan X. MD-MLI: Prediction of miRNA-lncRNA Interaction by Using Multiple Features and Hierarchical Deep Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1724-1733. [PMID: 33125334 DOI: 10.1109/tcbb.2020.3034922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Long non-coding RNA(lncRNA) can interact with microRNA(miRNA) and play an important role in inhibiting or activating the expression of target genes and the occurrence and development of tumors. Accumulating studies focus on the prediction of miRNA-lncRNA interaction, and mostly are concerned with biological experiments and machine learning methods. These methods are found with long cycles, high costs, and requiring over much human intervention. In this paper, a data-driven hierarchical deep learning framework was proposed, which was composed of a capsule network, an independent recurrent neural network with attention mechanism and bi-directional long short-term memory network. This framework combines the advantages of different networks, uses multiple sequence-derived features of the original sequence and features of secondary structure to mine the dependency between features, and devotes to obtain better results. In the experiment, five-fold cross-validation was used to evaluate the performance of the model, and the zea mays data set was compared with the different model to obtain better classification effect. In addition, sorghum, brachypodium distachyon and bryophyte data sets were used to test the model, and the accuracy reached 0.9850, 0.9859 and 0.9777, respectively, which verified the model's good generalization ability.
Collapse
|
4
|
Xuan P, Gong Z, Cui H, Li B, Zhang T. Fully connected autoencoder and convolutional neural network with attention-based method for inferring disease-related lncRNAs. Brief Bioinform 2022; 23:6561435. [PMID: 35362511 DOI: 10.1093/bib/bbac089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
Since abnormal expression of long noncoding RNAs (lncRNAs) is often closely related to various human diseases, identification of disease-associated lncRNAs is helpful for exploring the complex pathogenesis. Most of recent methods concentrate on exploiting multiple kinds of data related to lncRNAs and diseases for predicting candidate disease-related lncRNAs. These methods, however, failed to deeply integrate the topology information from the meta-paths that are composed of lncRNA, disease and microRNA (miRNA) nodes. We proposed a new method based on fully connected autoencoders and convolutional neural networks, called ACLDA, for inferring potential disease-related lncRNA candidates. A heterogeneous graph that consists of lncRNA, disease and miRNA nodes were firstly constructed to integrate similarities, associations and interactions among them. Fully connected autoencoder-based module was established to extract the low-dimensional features of lncRNA, disease and miRNA nodes in the heterogeneous graph. We designed the attention mechanisms at the node feature level and at the meta-path level to learn more informative features and meta-paths. A module based on convolutional neural networks was constructed to encode the local topologies of lncRNA and disease nodes from multiple meta-path perspectives. The comprehensive experimental results demonstrated ACLDA achieves superior performance than several state-of-the-art prediction methods. Case studies on breast, lung and colon cancers demonstrated that ACLDA is able to discover the potential disease-related lncRNAs.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Zhe Gong
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Bochong Li
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
5
|
Sun C, Xuan P, Zhang T, Ye Y. Graph Convolutional Autoencoder and Generative Adversarial Network-Based Method for Predicting Drug-Target Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:455-464. [PMID: 32750854 DOI: 10.1109/tcbb.2020.2999084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The computational prediction of novel drug-target interactions (DTIs) may effectively speed up the process of drug repositioning and reduce its costs. Most previous methods integrated multiple kinds of connections about drugs and targets by constructing shallow prediction models. These methods failed to deeply learn the low-dimension feature vectors for drugs and targets and ignored the distribution of these feature vectors. We proposed a graph convolutional autoencoder and generative adversarial network (GAN)-based method, GANDTI, to predict DTIs. We constructed a drug-target heterogeneous network to integrate various connections related to drugs and targets, i.e., the similarities and interactions between drugs or between targets and the interactions between drugs and targets. A graph convolutional autoencoder was established to learn the network embeddings of the drug and target nodes in a low-dimensional feature space, and the autoencoder deeply integrated different kinds of connections within the network. A GAN was introduced to regularize the feature vectors of nodes into a Gaussian distribution. Severe class imbalance exists between known and unknown DTIs. Thus, we constructed a classifier based on an ensemble learning model, LightGBM, to estimate the interaction propensities of drugs and targets. This classifier completely exploited all unknown DTIs and counteracted the negative effect of class imbalance. The experimental results indicated that GANDTI outperforms several state-of-the-art methods for DTI prediction. Additionally, case studies of five drugs demonstrated the ability of GANDTI to discover the potential targets for drugs.
Collapse
|
6
|
Graph convolutional network approach to discovering disease-related circRNA-miRNA-mRNA axes. Methods 2021; 198:45-55. [PMID: 34758394 DOI: 10.1016/j.ymeth.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Non-coding RNAs are gaining prominence in biology and medicine, as they play major roles in cellular homeostasis among which the circRNA-miRNA-mRNA axes are involved in a series of disease-related pathways, such as apoptosis, cell invasion and metastasis. Recently, many computational methods have been developed for the prediction of the relationship between ncRNAs and diseases, which can alleviate the time-consuming and labor-intensive exploration involved with biological experiments. However, these methods handle ncRNAs separately, ignoring the impact of the interactions among ncRNAs on the diseases. In this paper we present a novel approach to discovering disease-related circRNA-miRNA-mRNA axes from the disease-RNA information network. Our method, using graph convolutional network, learns the characteristic representation of each biological entity by propagating and aggregating local neighbor information based on the global structure of the network. The approach is evaluated using the real-world datasets and the results show that it outperforms other state-of-the-art baselines on most of the metrics.
Collapse
|
7
|
Xuan P, Wang D, Cui H, Zhang T, Nakaguchi T. Integration of pairwise neighbor topologies and miRNA family and cluster attributes for miRNA-disease association prediction. Brief Bioinform 2021; 23:6385813. [PMID: 34634106 DOI: 10.1093/bib/bbab428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/01/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
Identifying disease-related microRNAs (miRNAs) assists the understanding of disease pathogenesis. Existing research methods integrate multiple kinds of data related to miRNAs and diseases to infer candidate disease-related miRNAs. The attributes of miRNA nodes including their family and cluster belonging information, however, have not been deeply integrated. Besides, the learning of neighbor topology representation of a pair of miRNA and disease is a challenging issue. We present a disease-related miRNA prediction method by encoding and integrating multiple representations of miRNA and disease nodes learnt from the generative and adversarial perspective. We firstly construct a bilayer heterogeneous network of miRNA and disease nodes, and it contains multiple types of connections among these nodes, which reflect neighbor topology of miRNA-disease pairs, and the attributes of miRNA nodes, especially miRNA-related families and clusters. To learn enhanced pairwise neighbor topology, we propose a generative and adversarial model with a convolutional autoencoder-based generator to encode the low-dimensional topological representation of the miRNA-disease pair and multi-layer convolutional neural network-based discriminator to discriminate between the true and false neighbor topology embeddings. Besides, we design a novel feature category-level attention mechanism to learn the various importance of different features for final adaptive fusion and prediction. Comparison results with five miRNA-disease association methods demonstrated the superior performance of our model and technical contributions in terms of area under the receiver operating characteristic curve and area under the precision-recall curve. The results of recall rates confirmed that our model can find more actual miRNA-disease associations among top-ranked candidates. Case studies on three cancers further proved the ability to detect potential candidate miRNAs.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Dong Wang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| |
Collapse
|
8
|
Shen C, Luo J, Ouyang W, Ding P, Wu H. Identification of Small Molecule–miRNA Associations with Graph Regularization Techniques in Heterogeneous Networks. J Chem Inf Model 2020; 60:6709-6721. [DOI: 10.1021/acs.jcim.0c00975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Wenjue Ouyang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Pingjian Ding
- School of Computer Science, University of South China, Hengyang 421001, China
| | - Hao Wu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| |
Collapse
|
9
|
Shen C, Luo J, Lai Z, Ding P. Multiview Joint Learning-Based Method for Identifying Small-Molecule-Associated MiRNAs by Integrating Pharmacological, Genomics, and Network Knowledge. J Chem Inf Model 2020; 60:4085-4097. [DOI: 10.1021/acs.jcim.0c00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Zihan Lai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Pingjian Ding
- School of Computer Science, University of South China, Hengyang 421001, China
| |
Collapse
|
10
|
Pan X, Shen HB. Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks. iScience 2019; 20:265-277. [PMID: 31605942 PMCID: PMC6817654 DOI: 10.1016/j.isci.2019.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in biological processes involved in diseases. The associations between diseases and protein-coding genes (PCGs) have been well investigated, and miRNAs interact with PCGs to trigger them to be functional. We present a computational method, DimiG, to infer miRNA-associated diseases using a semi-supervised Graph Convolutional Network model (GCN). DimiG uses a multi-label framework to integrate PCG-PCG interactions, PCG-miRNA interactions, PCG-disease associations, and tissue expression profiles. DimiG is trained on disease-PCG associations and an interaction network using a GCN, which is further used to score associations between diseases and miRNAs. We evaluate DimiG on a benchmark set from verified disease-miRNA associations. Our results demonstrate that DimiG outperforms the best unsupervised method and is comparable to two supervised methods. Three case studies of prostate cancer, lung cancer, and inflammatory bowel disease further demonstrate the efficacy of DimiG, where top miRNAs predicted by DimiG are supported by literature.
Collapse
Affiliation(s)
- Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China; Department of Medical informatics, Erasmus Medical Center, 3015 CE Rotterdam, the Netherlands.
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China.
| |
Collapse
|
11
|
Predicting miRNA-Disease Associations by Incorporating Projections in Low-Dimensional Space and Local Topological Information. Genes (Basel) 2019; 10:genes10090685. [PMID: 31500152 PMCID: PMC6770973 DOI: 10.3390/genes10090685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Predicting the potential microRNA (miRNA) candidates associated with a disease helps in exploring the mechanisms of disease development. Most recent approaches have utilized heterogeneous information about miRNAs and diseases, including miRNA similarities, disease similarities, and miRNA-disease associations. However, these methods do not utilize the projections of miRNAs and diseases in a low-dimensional space. Thus, it is necessary to develop a method that can utilize the effective information in the low-dimensional space to predict potential disease-related miRNA candidates. We proposed a method based on non-negative matrix factorization, named DMAPred, to predict potential miRNA-disease associations. DMAPred exploits the similarities and associations of diseases and miRNAs, and it integrates local topological information of the miRNA network. The likelihood that a miRNA is associated with a disease also depends on their projections in low-dimensional space. Therefore, we project miRNAs and diseases into low-dimensional feature space to yield their low-dimensional and dense feature representations. Moreover, the sparse characteristic of miRNA-disease associations was introduced to make our predictive model more credible. DMAPred achieved superior performance for 15 well-characterized diseases with AUCs (area under the receiver operating characteristic curve) ranging from 0.860 to 0.973 and AUPRs (area under the precision-recall curve) ranging from 0.118 to 0.761. In addition, case studies on breast, prostatic, and lung neoplasms demonstrated the ability of DMAPred to discover potential disease-related miRNAs.
Collapse
|
12
|
CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations. Int J Mol Sci 2019; 20:ijms20174260. [PMID: 31480319 PMCID: PMC6747450 DOI: 10.3390/ijms20174260] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that the unusual expression of long non-coding RNAs (lncRNAs) is closely related to the physiological and pathological processes of diseases. Therefore, inferring the potential lncRNA–disease associations are helpful for understanding the molecular pathogenesis of diseases. Most previous methods have concentrated on the construction of shallow learning models in order to predict lncRNA-disease associations, while they have failed to deeply integrate heterogeneous multi-source data and to learn the low-dimensional feature representations from these data. We propose a method based on the convolutional neural network with the attention mechanism and convolutional autoencoder for predicting candidate disease-related lncRNAs, and refer to it as CNNDLP. CNNDLP integrates multiple kinds of data from heterogeneous sources, including the associations, interactions, and similarities related to the lncRNAs, diseases, and miRNAs. Two different embedding layers are established by combining the diverse biological premises about the cases that the lncRNAs are likely to associate with the diseases. We construct a novel prediction model based on the convolutional neural network with attention mechanism and convolutional autoencoder to learn the attention and the low-dimensional network representations of the lncRNA–disease pairs from the embedding layers. The different adjacent edges among the lncRNA, miRNA, and disease nodes have different contributions for association prediction. Hence, an attention mechanism at the adjacent edge level is established, and the left side of the model learns the attention representation of a pair of lncRNA and disease. A new type of lncRNA similarity and a new type of disease similarity are calculated by incorporating the topological structures of multiple bipartite networks. The low-dimensional network representation of the lncRNA-disease pairs is further learned by the autoencoder based convolutional neutral network on the right side of the model. The cross-validation experimental results confirm that CNNDLP has superior prediction performance compared to the state-of-the-art methods. Case studies on stomach cancer, breast cancer, and prostate cancer further show the ability of CNNDLP for discovering the potential disease lncRNAs.
Collapse
|
13
|
Prediction of Disease-related microRNAs through Integrating Attributes of microRNA Nodes and Multiple Kinds of Connecting Edges. Molecules 2019; 24:molecules24173099. [PMID: 31455026 PMCID: PMC6749327 DOI: 10.3390/molecules24173099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 11/17/2022] Open
Abstract
Identifying disease-associated microRNAs (disease miRNAs) contributes to the understanding of disease pathogenesis. Most previous computational biology studies focused on multiple kinds of connecting edges of miRNAs and diseases, including miRNA-miRNA similarities, disease-disease similarities, and miRNA-disease associations. Few methods exploited the node attribute information related to miRNA family and cluster. The previous methods do not completely consider the sparsity of node attributes. Additionally, it is challenging to deeply integrate the node attributes of miRNAs and the similarities and associations related to miRNAs and diseases. In the present study, we propose a novel method, known as MDAPred, based on nonnegative matrix factorization to predict candidate disease miRNAs. MDAPred integrates the node attributes of miRNAs and the related similarities and associations of miRNAs and diseases. Since a miRNA is typically subordinate to a family or a cluster, the node attributes of miRNAs are sparse. Similarly, the data for miRNA and disease similarities are sparse. Projecting the miRNA and disease similarities and miRNA node attributes into a common low-dimensional space contributes to estimating miRNA-disease associations. Simultaneously, the possibility that a miRNA is associated with a disease depends on the miRNA's neighbour information. Therefore, MDAPred deeply integrates projections of multiple kinds of connecting edges, projections of miRNAs node attributes, and neighbour information of miRNAs. The cross-validation results showed that MDAPred achieved superior performance compared to other state-of-the-art methods for predicting disease-miRNA associations. MDAPred can also retrieve more actual miRNA-disease associations at the top of prediction results, which is very important for biologists. Additionally, case studies of breast, lung, and pancreatic cancers further confirmed the ability of MDAPred to discover potential miRNA-disease associations.
Collapse
|
14
|
Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks. Int J Mol Sci 2019; 20:ijms20153648. [PMID: 31349729 PMCID: PMC6696449 DOI: 10.3390/ijms20153648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Identification of disease-associated miRNAs (disease miRNAs) are critical for understanding etiology and pathogenesis. Most previous methods focus on integrating similarities and associating information contained in heterogeneous miRNA-disease networks. However, these methods establish only shallow prediction models that fail to capture complex relationships among miRNA similarities, disease similarities, and miRNA-disease associations. We propose a prediction method on the basis of network representation learning and convolutional neural networks to predict disease miRNAs, called CNNMDA. CNNMDA deeply integrates the similarity information of miRNAs and diseases, miRNA-disease associations, and representations of miRNAs and diseases in low-dimensional feature space. The new framework based on deep learning was built to learn the original and global representation of a miRNA-disease pair. First, diverse biological premises about miRNAs and diseases were combined to construct the embedding layer in the left part of the framework, from a biological perspective. Second, the various connection edges in the miRNA-disease network, such as similarity and association connections, were dependent on each other. Therefore, it was necessary to learn the low-dimensional representations of the miRNA and disease nodes based on the entire network. The right part of the framework learnt the low-dimensional representation of each miRNA and disease node based on non-negative matrix factorization, and these representations were used to establish the corresponding embedding layer. Finally, the left and right embedding layers went through convolutional modules to deeply learn the complex and non-linear relationships among the similarities and associations between miRNAs and diseases. Experimental results based on cross validation indicated that CNNMDA yields superior performance compared to several state-of-the-art methods. Furthermore, case studies on lung, breast, and pancreatic neoplasms demonstrated the powerful ability of CNNMDA to discover potential disease miRNAs.
Collapse
|